Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T23:54:45.507Z Has data issue: false hasContentIssue false

Incorporation of Luminescent Zinc Oxide Nanoparticles into Polystyrene

Published online by Cambridge University Press:  10 April 2013

Rui Li
Affiliation:
Wolfson Centre for Materials Processing, Brunel University, Uxbridge, UB8 3PH, UK
Robert Withnall
Affiliation:
Wolfson Centre for Materials Processing, Brunel University, Uxbridge, UB8 3PH, UK
Jack Silver
Affiliation:
Wolfson Centre for Materials Processing, Brunel University, Uxbridge, UB8 3PH, UK
Peter Bishop
Affiliation:
Johnson Matthey Technology Centre, Reading, Berkshire, RG4 9NH, UK
Benedicte Thiebaut
Affiliation:
Johnson Matthey Technology Centre, Reading, Berkshire, RG4 9NH, UK
Get access

Abstract

Zinc oxide (ZnO) nanoparticles and nanoparticles of luminescent zinc oxide (ZnO:Zn) phosphor were successfully synthesised and well characterised. A transparent polystyrene composite sheet containing ZnO:Zn nanoparticles was prepared by a solvent casting method. The sheet manifested comparable transmission to a virgin polystyrene film due to very uniform dispersion of the ZnO:Zn nanoparticles into the polystyrene. Evidence for uniform dispersion was evident in both its luminescent properties and in a SEM image. The photoluminescent characteristics of the ZnO:Zn, both as a pure powder and embedded in a polystyrene matrix, are reported. The uniformity of the photoluminescence of the composite sheet under near ultraviolet excitation is demonstrated. The luminescent ZnO:Zn nanoparticles are shown to have applications for use not only as an inhibitor of the ultraviolet degradation of polymers, but also for providing polymers with light emitting functionality.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gijsman, P., Meijers, G., Vitarelli, G., Polymer Degradation and Stability, 65 (1999) 433.CrossRefGoogle Scholar
Gijsman, P., Hennekens, J., Tummers, D., Polymer Degradation and Stability, 39 (1993) 225.CrossRefGoogle Scholar
Silver, J. and Withnall, R., Protection of Plastics, European Patent EP 2209843 date 28 July 2010.Google Scholar
Mochinaga, R., Yamasaki, T., Arakawa, T., Sensor Actuators B 52 (1998) 96.CrossRefGoogle Scholar
Gal, D., Hodes, G., Lincot, D., Schock, H., Thin Solid Films 361362 (2000) 79.CrossRefGoogle Scholar
Lincot, D., Actualite´ Chimique (May) (1999) 23.Google Scholar
Nahm, C. W., Park, C.H., J. Mater. Sci. 35 (2000) 3037.CrossRefGoogle Scholar
Pauporte, T., Lincot, D., Electrochim. Acta 45 (2000) 3345.CrossRefGoogle Scholar
Pineda, M., Palacios, J., Alonso, L., Garcia, E., Moliner, R., Fuel 79 (2000) 885.CrossRefGoogle Scholar
Turkoglu, M., Yener, S., Int. J. Cosmet. Sci. 19 (1997) 193.CrossRefGoogle Scholar
Mitchnick, M., Fairhurst, D., Pinnell, S., J. Am. Acad. Dermatol. 40, (1999) 85.CrossRefGoogle Scholar
Iwasaki, T., Satoh, M., Masuda, T., Fujita, T., J. Mater. Sci. 35 (2000) 4025.CrossRefGoogle Scholar
Casey, P., Nanoparticle technologies and Applications. In Hannick, R.h. J. & Hill, A. (Eds.), Nanostructure control of materials (Cambridge, UK. Woodhead Publishing Ltd.), pp 127 Google Scholar
Osmond, M. J., J. Mccall, Nanotoxicology, 2010, 4, 1541 CrossRefGoogle Scholar
Wen, B., Wang, F., Xu, X., Ding, Y., Zhang, S. and Yang, M., Polymer-Plastic Technology and Engineering, 50 (13751382) 2011.CrossRefGoogle Scholar