Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-17T02:28:30.346Z Has data issue: false hasContentIssue false

Incorporation, Excitation and De-Excitation of Erbium in Crystal Silicon

Published online by Cambridge University Press:  10 February 2011

M. J. A. De Dood
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands, kik@amolf.nl
P. G. Kik
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands, kik@amolf.nl
J. H. Shin
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands, kik@amolf.nl
A. Polman
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands, kik@amolf.nl
Get access

Abstract

Temperature quenching of the 1.54 μm photoluminescence intensity and lifetime of Er in crystal Si was investigated between 12 K and 150 K. A p-type Czochralski-grown Si (100) wafer was doped with Er to a peak concentration of 5×1018 cm−3 using 1.5 MeV ion implantation. The Er doped layer was co-implanted with N to a peak concentration of 6×1019 N cm−3 The sample was annealed at 490 °C for 2 hours and at 600 °C for 1 hour. The 1.54 μm photoluminescence intensity shows a weak temperature quenching between 12 and 75 K, characterised by an activation energy of 1–10 meV. For temperatures above 75 K, a strong intensity quenching with an activation energy of 210 ± 10 meV is observed. The luminescence lifetime decreases from 420 μs at 12 K to 1 μs at 170 K, and shows strong quenching behaviour above 75 K, characterised by an activation energy of 135 ± 5 meV. The results are interpreted in terms of an impurity Auger energy transfer model. The lifetime quenching is attributed to a phonon assisted backtransfer process which becomes dominant at high temperatures. Intensity quenching is attributed to both the backtransfer process and a carrier de-trapping process which reduces the Er excitation rate. Spectral response measurements on Er implanted solar cells confirm the presence of a backtransfer process at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Favennec, P. N., I'Haridon, H., Moutonnet, D., Salvi, M., and Gauneau, M., Jpn. J.Appl. Phys. 29, L524 (1990).Google Scholar
2. Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. G., Fitzgerald, E. A., Xie, Y. -H., Poate, J. M. and Kimerling, L. C., J. Appl. Phys. 70, 2672 (1991)Google Scholar
3. Priolo, F., Franzò, G., Coffa, S., Polman, A., Libertino, S., Barklie, R. and Carey, D., J. Appl. Phys. 78 3874 (1995)Google Scholar
4. Polman, A., van den Hoven, G. N., Custer, J. S., Shin, J. H., Serna, R. and Alkemade, P. F. A., J. Appl. Phys. 77 1256 (1995)Google Scholar
5. Coffa, S., Franzò, G., Priolo, F., Polman, A. and Serna, R., Phys. Rev. B, 49, 16313 (1994)Google Scholar
6. Keevers, M. J., Saris, F. W., Zhang, G. C., Zhao, J., Green, M. A. and Elliman, R., Proceedings 13th European Photovoltaic Solar Energy Conference, Nice, Oct. 1995, p. 1215 Google Scholar
7. Custer, J. S., Polman, A., and van Pinxteren, H. M., J. Appl. Phys. 75 2806 (1994)Google Scholar
8. Priolo, F., Coffa, S., Franzo, G., Spinella, C., Camera, A., Bellani, V., J. Appl. Phys., 74, 4936 (1993)Google Scholar
9. Davies, G., Physics Reports 176, 83 (1989)Google Scholar
10. Sze, S. M., Physics ofSemiconductor Devices, 2nd Ed., (Wiley, New York, 1981) p. 17 Google Scholar
11. Barnes, W. L., Laming, R. I., Tarbox, E. J. and Morkel, P. R., IEEE J. Quantum Electron. 27, 1004, (1991)Google Scholar
12. Green, M. A., Silicon Solar Cells, (University of New South Wales, Sydney, 1995) Ch. 6Google Scholar