Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T22:58:14.390Z Has data issue: false hasContentIssue false

Incorporation and Optical Activation of Er in Group III-N Materials Grown by Metalorganic Molecular Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

J. D. Mackenzie
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611.
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611.
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611.
S. M. Donovan
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611.
U. Hömmerich
Affiliation:
Department of Physics, Research Center for Optical Physics, Hampton University, Hampton, VA 23668
M. Thaik
Affiliation:
Department of Physics, Research Center for Optical Physics, Hampton University, Hampton, VA 23668
X. Wu
Affiliation:
Department of Physics, Research Center for Optical Physics, Hampton University, Hampton, VA 23668
F. Ren
Affiliation:
Lucent Technologies, Murray Hill, New Jersey 07974
R. G. Wilsons
Affiliation:
Hughes Research Laboratory, Malibu, California 90265
J. M. Zavada
Affiliation:
J.U.S. Army Research Office, Research Triangle Park, NC 27709
Get access

Abstract

Metalorganic molecular beam epitaxy has been utilized to incorporate Er into AlGaN materials during growth utilizing elemental and metalorganic sources. Room temperature 1.54 μm photoluminescence was observed from AlN:Er and GaN:Er. Photoluminescence from AlN:Er doped during growth using the elemental source was several times more intense than that observed from implanted material. For the first time, strong room temperature 1.54 μm PL was observed in GaN:Er grown on Si. Temperature-dependent photoluminescence experiments indicated the 1.54 μm intensities were reduced to 60% and 40% for AlN:Er and GaN:Er, respectively, between 15 K and 300 K. The low volatility of Er(III) tris (2,2,6,6 - tetramethyl heptanedionate) and temperature limitations imposed by transport considerations limited maximum doping levels to ∼1017 cm-3 indicating that this precursor is unsuitable for UHV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ennen, H., Schneider, J., Pomrenke, G., and Axman, A., Appl. Phys. Lett., 43, 943 (1983).Google Scholar
2 Eaglesham, D. J., Michel, J., Fitzgerald, E. A., Jacobson, D. C., Poate, J. M., Benton, J. L., Polman, A., Xie, Y. -H., and Kimmerling, L. C., Appl. Phys. Lett., 58, 2797 (1991).Google Scholar
3 Kozanecki, A., Chan, M., Jeynes, C., Sealy, B., and Homewood, K., Solid State Commun., 78, 763 (1991).Google Scholar
4 Tang, Y. S., Zhang, J., Heasman, K. C., and Sealy, B. J., Solid State Commun., 72, 991 (1989).Google Scholar
5 Nakata, J., Taniguchi, M., and Takahei, K., Appl. Phys. Lett., 61, 2665 (1992).Google Scholar
6 Wessels, B. W., Mat. Res. Soc. Symp. Proc, 422, 247 (1996).Google Scholar
7 Favennec, P. N., L'Haridon, H. L., Moutonet, D., Salvi, M., and Gauneau, M., Jap. J. Appl. Phys., 29, L524 (1990).Google Scholar
8 Adler, D. L., Jacobson, D. C., Eaglesham, D. J., Marcus, M. A., Benton, J. L., Poate, J. M. and Citrin, P. H., Appl. Phys. Lett, 61, 2181 (1992).Google Scholar
9 Priolo, F., Franzo, G., Coffa, S., Polman, A., Libertino, S., Barklie, R., and Carey, D., J. Appl. Phys., 78, 3874(1995).Google Scholar
10 Favennec, P. N., Harridon, H. L., Salvi, M., Moutonnet, D. and Cuillo, Y. L., Electron. Lett. 25 718(1989).Google Scholar
11 Zavada, J. M. and Zhang, D., Solid State Electron., 38, 1285 (1995).Google Scholar
12 Neuhalfen, A. J. and Wessels, B. W., Appl. Phys. Lett. 59 2317 (1991).Google Scholar
13 Wilson, R. G., Schwartz, R. N., Abernathy, C. R., Pearton, S. J., Newman, N., Rubin, M., Fu, T. and Zavada, J. M., Appl. Phys. Lett. 65, 992 (1994).Google Scholar
14 Qiu, C. H., Leksono, M. W., Pankove, J. L., Torvik, J. T., Feuerstein, R. J., and Namavar, F., Appl. Phys. Lett. 66, 562 (1995).Google Scholar
15 Silkowsky, E., Yeo, Y. K., Hengehold, R. L., Goldenberg, B., and Pomrenke, G. S., Mat. Res. Soc. Symp. Proc, A11, 69 (1996).Google Scholar
16 Chang, S. J. and Takahei, K., Appl. phys. Lett., 65, 433 (1994).Google Scholar
17 Redwing, J. M., Kuech, T. F., Gordon, D. C., Vaarstra, B. A., Lau, S. S., J. Appl. Phys., 97, 1585 (1994).Google Scholar
18 Rolland, A., Le Corre, A., Favennec, P. N., Gauneau, M., Lambert, B., Lecrosnier, D., L'Haridon, H., Moutonnet, D., Rochaix, C., Electron. Lett., 24 (1988).Google Scholar
19 Whitney, P. S., Uwai, K., Nakagome, H., and Takahei, K., Electron. Lett., 24, 740 (1988).Google Scholar
20 MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Hommerich, U., Wu, X., Schwartz, R. N., Wilson, R. G., and Zavada, J. M., Appl. Phys. Lett., 69, 2083 (1996).Google Scholar
21 Andry, P. S., Varhue, W. J., Adams, E., Lavoie, M., klein, P. B., Hengehold, R., and Hunter, J., Mat. Res. Soc. Symp. Proc, 422, 57 (1996).Google Scholar
22 Greenwald, A. C., Linden, K. J., Rees, W. S., Just, O., Haegel, N. M., and Donder, S., Mat. Res. Soc. Symp. Proc, 411, 63 (1996).Google Scholar
23 Wang, X. Z. and Wessels, B. W., Appl. phys. Lett., 67 (1995) 518.Google Scholar
24 MacKenzie, J. D., Abbaschian, L., Abernathy, C. R., Donovan, S. M., Pearton, S. J., Chow, P. C. and Van Hove, J., Journal of Electronic Materials, to be published.Google Scholar
25 MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Krishnamoorthy, V., Bharatan, S., Jones, K. S., and Wilson, R. G., Appl. phys. Lett., 67 (1995) 253.Google Scholar