Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-29T09:45:02.587Z Has data issue: false hasContentIssue false

Incidence Angle Dependence of the Silicon Near-Surface Contamination Caused by CF4 Reactive Ion Beam Etching

Published online by Cambridge University Press:  21 February 2011

C. Lejeune
Affiliation:
Institut d'Electronique Fondamentale, Université Paris XI et CNRS (URA 22), Bât. 220, 91405 ORSAY Cedex, FRANCE.
J.P. Grandchamp
Affiliation:
Institut d'Electronique Fondamentale, Université Paris XI et CNRS (URA 22), Bât. 220, 91405 ORSAY Cedex, FRANCE.
J.P. Gilles
Affiliation:
Institut d'Electronique Fondamentale, Université Paris XI et CNRS (URA 22), Bât. 220, 91405 ORSAY Cedex, FRANCE.
E. Collard
Affiliation:
Institut d'Electronique Fondamentale, Université Paris XI et CNRS (URA 22), Bât. 220, 91405 ORSAY Cedex, FRANCE.
Get access

Abstract

The incidence angle dependence of silicon near-surface contamination caused by CF4 Reactive Ion Beam Etching was studied using on-line variation of SiF4 partial pressure and Auger Sputter Profiling. Initial and steady state etch rates both vanish at grazing incidence and have a smooth maximum at 20–30 deg. It is shown that whatever is the incidence angle, a C, F-blocking overlayer grows involving an etch rate attenuation by a factor which is only slightly dependent on the incidence angle. As the angle increases, with a 500 eV beam, the thickness of the C, F contamination layer decreases monotonically from 1.9 nm down to a constant value of about 1nm achieved beyond a critical angle of 45 deg. Then a “C, F-reactive mixed layer” is seen over the silicon the etching of which is dominated by surface mechanisms. Conversely with the lower angles, the thickness of the “carbonaceous incorporated layer” becomes larger than that of the mixed layer, and volume mechanisms dominate the silicon removal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Oehrlein, G.S. and Williams, H.L., J. Appl. Phys. 62, 662 (1987).Google Scholar
2. Bright, A.A., Kaushik, S. and Oehrlein, G.S., J.Appl. Phys. 62, 2518 (1987).Google Scholar
3. Mu, X. C. and Fonash, S.J., Oehrlein, G.S., Chakravarti, S.N., Parks, C. and Keller, J., J. Appl. Phys. 59, 2958 (1986).Google Scholar
4. Heath, B.A., J. Electrochem. Soc. 129, 396 (1982).Google Scholar
5. Mayer, T.M., Barker, R.A. and Whitman, L.J., J. Vac Sci. Technol. 18, 349 (1981).Google Scholar
6. Matsui, S., Yamato, T., Aritome, H. and Namba, S., Jpn. J. Appl. Phys. 12, L126 (1980).Google Scholar
7. Okano, H. and Horiike, Y., in Plasma Processing, edited by Frieser, R.G. and Mogab, C.J. (Electrochemical Society Proceedings Series, 1981), p. 199.Google Scholar
8. Lejeune, C.,Grandchamp, J.P., Gilles, J.P., Collard, E. and Scheiblin, P., Rev. Phys. Appl. 24, 295 (1989).Google Scholar
9. Lejeune, C., Grandchamp, J.P., Collard, E. and Scheiblin, P., in Proc.ISPC-9 II (Pugnochiuso. Italy, 990 (1989).Google Scholar
10. Winters, H.F. and Houle, F.A., J. Appl. Phys. 54, 1218 (1983).Google Scholar
11. Scheiblin, P., Collard, E., Grandchamp, J.P. and Leleune, C., Le vide, les couches minces sup. 246, 111 (1989).Google Scholar
12. Okano, H. and Horiike, Y., Jpn. J. Appl. Phys. 20, 2429 (1981).Google Scholar
13. Collard, E., Lejeune, C., Grandchamp, J.P., Gilles, J.P. and Scheiblin, P., presented at 8th Int. Conf. on Thin Films, 17th Int. Conf. on Metallurgical Coatings, San Diego, CA, 1990 (to be published in Thin Solid Films).Google Scholar
14. Lejeune, C., Collard, E., Grandchamp, J.P., Scheiblin, P. and Gilles, J.P., presented at 8th Int. Conf. on Thin Films, 17th Int. Conf. on Metallurgical Coatings, San Diego, CA, 1990 (to be published in Thin Solid Films).Google Scholar
15. Oehrlein, G.S., Robey, S.W. and Lindström, J.L., Appl. Phys. Lett. 52, 1170 (1988).Google Scholar
16. Occhiello, E., Garbassi, F. and Coburn, J.W., J. Phys. D: Appl. Phys. 22, 983 (1989).Google Scholar
17. Winters, H.F., J. Appl. Phys. 64, 2805 (1988).Google Scholar
18. Tachi, S. and Okudaira, S., J. Vac. Sci. Technol. B4, 459 (1986).Google Scholar