Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-01T23:14:54.891Z Has data issue: false hasContentIssue false

InAs and InGaAs Growth by Chloride Atomic Layer Epitaxy

Published online by Cambridge University Press:  28 February 2011

H. Shimawaki
Affiliation:
NEC Corp., Microelectronics Research Laboratories, 4-1-1, Miyazaki, Miyamae-ku, Kawasaki, Kanagawa 213, Japan
Y. Kato
Affiliation:
NEC Corp., Fundamental Research Laboratories, 34, Miyukigaka, Tsukuba, Ibaraki 305, Japan
A. Usui
Affiliation:
NEC Corp., Fundamental Research Laboratories, 34, Miyukigaka, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

InAs chloride ALE has been carried out in detail, resulting in successful InGaAs ALE on (111)B InP substrates. InAs growth of 0.9 ML/cycle is obtained for (111)B InAs substrates at temperatures below 375 °C, while growth rates for (100) and (111)A substrates steadily decrease with increases in growth temperature. The growth rates are independent of InCI pressure at 375 °C, suggesting a self-limiting growth factor in InAs chloride ALE. (GaAs)1(InAs)1 and (GaAs)2(InAs)2 superalloys can be prepared on (111)B InP substrates at 375 °C. Growth rates and crystal compositions for both layers agree well with the values expected for ideal superalloys. The presence of superlattice structures is indicated by X-ray diffraction measurement,

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Chen, Y.K., Nottenburg, R.N., Panlsh, M.B., Hamm, R.A. and Humphrey, D.A., IEEE Electron Device Lett 10, 267 (1989).Google Scholar
2Farley, C.W., Chang, M.F., Asbeck, P.M., Sheng, N.H., Plerson, R., Sullivan, G.J., Wang, K.C. and Nubling, R.B., Electron. Lett. 25, 846 (1989).Google Scholar
3Henderson, T., Aksun, M.I., Peng, C.K., Morkoç, H., Chao, P.C., Smith, P.M., Duh, K.H.G. and Lester, L.F., IEEE Electron Device Lett. EDL–7, 649 (1986).Google Scholar
4Chao, P.C., Shur, M.S., Tlberio, R.C., Duh, K.H.G., Smith, P.M., Ballingall, J.M., Ho, P. and Jabra, A.A., IEEE Trans. Electron Devices 36, 461 (1989).Google Scholar
5Tamargo, M.C., Hull, R., Greene, L.H., Hayes, J.R. and Cho, A.Y., Appl. Phys. Lett. 46, 569 (1985).Google Scholar
6Fukul, T. and Saito, H., Japan. J. Appl. Phys. 23, L521 (1984); Appl. Phys. Lett. 50, 824 (1987).Google Scholar
7Suntola, T. and Antson, J., U.S. Patent No.4058430 (1977).Google Scholar
8Nishlzawa, J., Abe, H. and Kurabayashi, T., J. Electrochem. Soc. 132, 1197 (1985).Google Scholar
9Bedair, S.M., Tischler, M.A., Katsuyama, T. and El-Masry, N.A., Appl. Phys. Lett. 47, 51 (1985).Google Scholar
10Usui, A. and Sunakawa, H., Japan. J. Appl. Phys. 25, L212 (1986); Proc. 13th Int. Symp. GaAs and Related Compounds 1986 (Institute of Physics, Bristol, 1986), p. 129.Google Scholar
11McDermott, B.T., El-Masry, N.A., Tischler, M.A. and Bedair, S.M., Appl. Phys. Lett. 51, 1830(1987).Google Scholar
12Ohno, H., Ohtsuka, S., Ohuchi, A., Matsubara, T. and Hasegawa, H., J. Cryst. Growth 93, 342(1988).Google Scholar
13Jeong, W.G., Menu, E.P. and Dapkus, R.D., Appl. Phys. Lett. 55, 17 (1989).Google Scholar
14Nishlzawa, J., Kurabayashi, T., Abe, H. and Sakurai, N., J. Electrochem. Soc. 134, 945 (1987).Google Scholar