Skip to main content Accessibility help

In Situ Synchrotron X-ray Absorption Experiments and Modelling of the Growth Rates of Electrochemically Deposited ZnO Nanostructures

  • Bridget Ingham (a1), Benoit N. Illy (a2), Jade R. Mackay (a3), Stephen P. White (a4), Shaun C. Hendy (a5) and Mary P. Ryan (a6)...


ZnO is known to produce a wide variety of nanostructures that have enormous scope for optoelectronic applications. Using an aqueous electrochemical deposition technique, we are able to tightly control a wide range of deposition parameters (Zn2+ concentration, temperature, potential, time) and hence the resulting deposit morphology. By simultaneously conducting synchrotron x-ray absorption spectroscopy (XAS) experiments during the deposition, we are able to directly monitor the growth rates of the nanostructures, as well as providing direct chemical speciation of the films. In situ experiments such as these are critical to understanding the nucleation and growth of such nanostructures.

Recent results from in situ XAS synchrotron experiments demonstrate the growth rates as a function of potential and Zn2+ concentration. These are compared with the electrochemical current density recorded during the deposition, and the final morphology revealed through ex situ high resolution electron microscopy. The results are indicative of two distinct growth regimes, and simultaneous changes in the morphology are observed.

These experiments are complemented by modelling the growth of the rods in the transport-limited case, using the Nernst-Planck equations in 2 dimensions, to yield the growth rate of the volume, length, and radius as a function of time.



Hide All
1. Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Li, J.P. and Lin, C.L., Appl. Phys. Lett. 84 (2004) 3654.
2. Arnold, M.S., Avouris, P., Pan, Z.W. and Wang, Z.L., J. Phys. Chem. B 107 (2003), 659.
3. Law, M., Greene, L.E., Johnson, J.C., Saykally, R. and Yang, P.D., Nat. Mater. 4 (2005), 455.
4. Johnson, J., Yan, H., Yang, P. and Saykally, R., J. Phys. Chem. B 107 (2003), 8816.
5. Kadota, M. and Miura, T., Jpn. J. Appl. Phys. 41 (2002), 3281.
6. Wei, Q., Meng, G., An, X., Hao, Y. and Zhang, L., Nanotechnology 16 (2005), 2561.
7. Wang, L.S., Zhang, X.Z., Zhao, S.Q., Zhou, G.Y., Zhou, Y.L. and Qi, J.J., Appl. Phys. Lett. 86 (2005), 024108.
8. Lakshmi, B.B., Dorhout, P.K. and Martin, C.R., Chem. Mater. 9 (1997), 857.
9. Park, J.Y., Lee, D.J., Yun, Y.S., Moon, J.H., Lee, B.T. and Kim, S.S., J. Cryst. Growth 276 (2005), 158.
10. Kato, H., Sano, M., Miyamoto, K. and Yao, T., J. Cryst. Growth 237–239 (2002), 538.
11. Okada, T., Agung, B.H. and Nakata, Y., Appl. Phys. A 79 (2004), 1417.
12. Peulon, S. and Lincot, D., J. Electrochem. Soc. 145 (1998), 864.
13. Izaki, M. and Omi, T., J. Electrochem. Soc. 143 (1996)) L53.
14. Fahoumea, M., Maghfoula, O., Aggoura, M., Hartitib, B., Chraïbic, F. and Ennaouic, A., Solar En. Mat. Solar Cells 90 (2006), 1437.
15. Goux, A., Pauporte, T., Chivot, J. and Lincot, D., Electrochim. Acta 50 (2005), 2239.
16. Pauporte, T. and Lincot, D., Electrochim. Acta 45 (2000), 3345.
17. Peulon, S. and Lincot, D., J. Electrochem. Soc. 145 (1998), 864.
18. Cembrero, J., Elmanouni, A., Hartiti, B., Mollar, M. and Mari, B., Thin Solid Films 451-452 (2004), 198.
19. Lee, J. and Tak, Y., Electrochem. Solid State Lett. 4 (2001)) C63.
20. Weng, J., Zhang, Y., Han, G., Zhang, Y., Xu, L., Xu, J., Huang, X. and Chen, K., Thin Solid Films 478 (2005), 25.
21. Oblonsky, L.J., Ryan, M.P. and Isaacs, H.S., J. Electrochem. Soc. 145 (1998), 1922.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed