Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T05:25:31.106Z Has data issue: false hasContentIssue false

In Situ Studies of the Vibrational and Electronic Properties of Si Nanoparticles

Published online by Cambridge University Press:  09 August 2011

J. R. Fox
Affiliation:
Department of Physics, Penn State University, University Park, Pennsylvania 16802
I. A. Akimov
Affiliation:
Department of Physics, Penn State University, University Park, Pennsylvania 16802
X. X. Xi
Affiliation:
Department of Physics, Penn State University, University Park, Pennsylvania 16802
A. A. Sirenko
Affiliation:
Department of Physics, Penn State University, University Park, Pennsylvania 16802
Get access

Abstract

We report on in situ studies of the vibrational properties of ultra-thin Si layers grown by dc magnetron sputtering in ultrahigh vacuum on amorphous MgO and Ag buffer layers. The average thickness of the Si layers ranged from monolayer coverage up to 200 Å. The interference enhanced Raman scattering technique has been used to study changes in the phonon spectra of Si nanoparticles during the crystallization process. Marked size-dependencies in the phonon density of states of the Si quantum dots and the relaxation of the k-vector conservation condition with decrease in size of the Si nanoparticles have been detected. Electron energy loss spectra have been collected for amorphous and crystallized Si nanoparticles on SiO2 buffer layers and the difference in the onset of the electronic transitions have been found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cullis, A. G. and Canham, L. T., Nature 353 (6342), 335 (1991).Google Scholar
2. Challis, A. G., Canham, L. T. and Calcott, P. D. J., J. Appl. Phys. 82 (3), 909 (1997).Google Scholar
3. Eberl, K., Brunner, K. and Winter, W., Thin Solid Films 294 (1), 98 (1997).Google Scholar
4. Forsythe, E. W., Whittaker, E. A., Pollak, F. H. et al., in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R. W. (MRS, Pittsburgh, 1994), Vol.358.Google Scholar
5. Zhao, X. S., Ge, Y. R., Schroeder, J. et al., Appl. Phys. Lett. 65 (16), 2033 (1994).Google Scholar
6. Wilson, W. L., Szajowski, P. F. and Brus, L. E., Science 262 (5137), 1242 (1993).Google Scholar
7. Schuppler, S., Chabal, Y. J., Ross, F. M. et al., Phys. Rev. Lett. 72 (16), 2648 (1994).Google Scholar
8. Kovalev, D., Heckler, H., Averboukh, B. et al., Phys. Rev. Lett., accepted for publication (1998).Google Scholar
9. Alben, R., Weaire, D., Smith, J. E. Jr. etal., Phys. Rev. B 11, 2271 (1975).Google Scholar
10. Takagahara, T., J. Lumin. 70 (1), 129 (1996).Google Scholar
11. Ekimov, A., J. Lumin. 70 (1), 1 (1996).Google Scholar
12. Lannin, J. S., “Raman Scattering of Amorphous Si, Ge, and their Alloys,” in Semiconductors and Semimetals, edited by Pankove, J. I., v. 21B (Academic Press, Orlando, 1984), p. 159.Google Scholar
13. Lannin, J. S., Merkulov, V. I. and Cowley, J. M., in Advances in Microcrystalline and Nanocrystalline Semiconductors: Materials Research Society Symposia Proceedings No. 452, edited by Collins, R. W., et al., (MRS, Pittsburgh, 1996), p. 225.Google Scholar
14. Trallero-Giner, C., Debernardi, A., Cardona, M. et al., Phys. Rev. B 57 (8), 4664 (1998).Google Scholar
15. Sirenko, A. A., Belitsky, V. I., Ruf, T. etal., Phys. Rev. B 58 (4), 2077 (1998).Google Scholar
16. Hayashi, S. and Abe, H., Jpn. J. Appl. Phys. 23, L824 (1984).Google Scholar
17. Igbal, Z., Veprek, S., Webb, A. P. et al., Solid State Comm. 37, 993 (1981).Google Scholar
18. Gao, Y. and López-Research-articleíos, T., Solid State Commun. 60, 55 (1986).Google Scholar
19. Connel, G. A. N., Nemanich, R. J. and Tsai, C. C., Appl. Phys. Lett. 36, 31 (1980).Google Scholar
20. Tsang, J. C., in Light Scattering in Solids, edited by Cardona, M. and Giintherodt, G., Topics in Applied Physics, v. V (Springer-Verlag, Berlin, 1989), p. 233.Google Scholar
21. Fortner, J. and Lannin, J. S., Surf. Sci. 254 (1), 251 (1991).Google Scholar
22. Froitzheim, H., Ibach, H. and Mills, D. L., Phys. Rev. B.11 (12), 4980 (1975).Google Scholar
23. Lopinski, G. P. and Lannin, J. S., Appl. Phys. Lett. 69 (16), 2400 (1996).Google Scholar
24. Lopinski, Gregory P., Merkulov, Vladimir I., and Lannin, Jeffrey S., Phys. Rev. Lett. 80 (19), 4241 (1998).Google Scholar
25. Bacsa, W. S. and Lannin, J. S., Appl. Phys. Lett. 61 (1), 19 (1992).Google Scholar
26. Smith, J. E., Brodsky, M. H., Crowder, B. L. et al., Phys. Rev. Lett. 26, 642 (1971).Google Scholar
27. Lannin, J. S. and Carrol, P. J., Philos. Mag. 45, 155 (1982).Google Scholar
28. Nilsen, G. and Nelin, G., Phys. Rev. B 6, 3777 (1972).Google Scholar
29. Yu, Peter Y. and Manuel, Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer-Verlag, Berlin, 1995), p 103.Google Scholar
30. Bimberg, D., et al., in Numerical Data and Functional Relationships in Science and Technology, edited by Madelung, O., Landolt-Böirnstein, , New Series, Group III, v. 17a (Springer, Berlin, 1982), p. 72.Google Scholar
31. Sirenko, A., Fox, J.R., Rouvimov, S. et al., “To be published.”Google Scholar
32. Cody, G. D., “The Optical Absorption Edge of a-Si:H,” in Semiconductors and Semimeta,'s, edited by Pankove, J. I., v. 21B (Academic Press, Orlando, 1984), p. 11.Google Scholar