Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T12:06:10.795Z Has data issue: false hasContentIssue false

In Situ Observation of scaling Behavior During Solution-Phase Growth of Surfactant Monolayers

Published online by Cambridge University Press:  10 February 2011

Daniel K. Schwartz
Affiliation:
Department of Chemistry, Tulane University, New Orleans, LA 70118
Ivo Doudevski
Affiliation:
Department of Chemistry, Tulane University, New Orleans, LA 70118
Get access

Abstract

“Self-assembled” monolayers of amphiphilic surfactant molecules form spontaneously on solid surfaces by exposure to dilute solutions of the adsorbate molecules. These monolayers are shown to form via a mechanism that includes nucleation, growth, coalescence, etc. of densely- packed submonolayer islands of the long-chain organic molecules. In situ atomic force microscopy experiments allow a quantitative analysis of island nucleation and growth rates as well as determination of the island size distribution as a function of coverage. In the growth regime, the nucleation and growth rates have a power law behavior consistent with a simple point island model of 2D cluster growth. The exponents are consistent with a critical nucleus of two molecules and the 2D diffusion coefficient corresponds to a “hopping time” of about 1 microsecond. In the aggregation regime, the island size distributions are shown to scale with a single evolving length scale in accordance with the dynamical scaling approximation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Poirier, G.E., Chem. Rev. 97, 1117 (1997); A. Ulman, Chem. Rev. 96, 1533 (1996).Google Scholar
2. Schwartz, D.K., Steinberg, S., Israelachvili, J., Zasadzinski, J.A., Phys. Rev. Lett. 69, 3354 (1992).Google Scholar
3. Bierbaum, K., Grunze, M., Baski, A.A., Chi, L.F., Schrepp, W., Fuchs, H., Langmuir 11, 2143 (1995).Google Scholar
4. Poirier, G.E., Pylant, E.D., Science 272, 1145 (1996).Google Scholar
5. Yamada, R., Uosaki, K., Langmuir 13, 5218 (1997).Google Scholar
6. Eberhardt, A., Fenter, P., Eisenberger, P., Surf. Sci. 397, L285 (1998).Google Scholar
7. Woodward, J.T., Schwartz, D.K., J. Am. Chem. Soc. 118, 7861 (1996).Google Scholar
8. Woodward, J.T., I Doudevski, Sikes, H.D., Schwartz, D.K., J. Phys. Chem. B 101, 7535 (1997).Google Scholar
9. Doudevski, I., Hayes, W.A. and Schwartz, D.K. Phys. Rev. Lett. 81, 4927 (1998)Google Scholar
10. Hayes, W.A. and Schwartz, D.K. Langmuir 14, 59135917 (1998).Google Scholar
11. For a recent review, see Zhang, Z., Lagally, M.G., Science 276, 377 (1997).Google Scholar
12. Bartelt, M.C., Evans, J.W., Phys. Rev. B 46, 12675 (1992).Google Scholar
13. Tang, L.-H., J. Phys I (France) 3, 935 (1993).Google Scholar
14. Amar, J.G., Family, F., Phys. Rev. B 50, 8781 (1994).Google Scholar
15. Vicsek, T., Family, F., Phys. Rev. Lett. 52, 1669 (1984).Google Scholar
16. Mullins, W.W., J. Appl. Phys. 59, 1341 (1986).Google Scholar
17. Zinke-Allmang, M., Feldman, L.C., Grabow, M.H., Surf. Sci. Rep. 16, 377 (1992) for a review.Google Scholar
18. Amar, J.G., Family, F., Phys. Rev. Lett. 74, 2066 (1995).Google Scholar
19. Amar, J.G., Family, F., Thin Solid Films 272, 208 (1996).Google Scholar