Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-30T22:05:39.195Z Has data issue: false hasContentIssue false

In Situ Control of Native Oxide Growth for Semiconductor Processes

Published online by Cambridge University Press:  25 February 2011

Mizuho Morita
Affiliation:
Department of Electronic Engineering, Faculty of Engineering, Tohoku University, Sendai 980, Japan
Tadahiro Ohmi
Affiliation:
Department of Electronic Engineering, Faculty of Engineering, Tohoku University, Sendai 980, Japan
Get access

Abstract

In situ control methods of native oxide growth on Si surfaces at room temperature and during the temperature ramp-up are proposed for metal/Si contact formation, lowtemperature Si epitaxy, and very-thin thermal oxide film formation, based on analyses of factors dominating the oxide growth. Low-resistance W/Si contacts are formed by N2 gas sealed processing of HF cleaning right before W chemical vapor deposition(CVD). Highquality epitaxial Si films are grown at a low temperature of 550°C using Si2H6 molecular flow pre-showering to suppress the oxide growth caused by water or oxygen in a CVD reactor. Very thin gate oxide films with high insulating performance are realized by the preoxidation step at 300°C to form one-molecular-layer oxide for passivation and by the subsequent temperature ramp-up step in ultraclean Ar gas to prevent oxide growth and an increase of surface microroughness before the thermal oxidation step.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohmi, T., Morita, M., Hasegawa, E., Kawakami, M., and Suma, K., in ULSI Science and Technology/1989, edited by Osburn, C. M. and Andrews, J. M., The Electrochemical Society, Pennington, NJ, 1989, P.327.Google Scholar
2. Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M., and Suma, K., Appl. Phys. Lett. 55, 562 (1989).Google Scholar
3. Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M., and Ohwada, M., J. Appl. Phys. 68, 1272 (1990).Google Scholar
4. Morita, M., Ohmi, T., Hasegawa, E., and Teramoto, A., Jpn. J. Appl. Phys. 29, L 2392 (1990)Google Scholar
5. Yabumoto, N., Saito, K., Morita, M., and Ohmi, T., Jpn. J. Appl. Phys. 30, 1419 (1991).Google Scholar
6. Ohmi, T., Morita, M., Yamada, K., Maeda, H., and Sako, T. (unpublished).Google Scholar
7. Yamada, K., Ohmi, T., Morita, M., Suzuki, H. and Soh, C. M., in Extended Abstracts of the 180th Electrochemical Society Meeting, Phoenix, 1991, p.829.Google Scholar
8. Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M., and Suma, K., in Digest, Technical Papers, 1989 VLSI Symposium, Kyoto, 1989, p.75.Google Scholar
9. Morita, M., Ohmi, T., Hasegawa, E., Teramoto, A., Kawakami, S., in Ultra Clean Technology, Submicron ULSI Process Technology III, edited by Ohmi, T. and Nitta, T., Realize, Tokyo, 1990, p.125 (in Japanese).Google Scholar
10. Ohmi, T., Morita, M., Teramoto, A., Makihara, K., and Tseng, T. S., Appl. Phys. Lett. 60, (1992).CrossRefGoogle Scholar
11. Cabrera, N. and Mott, N. F., Rept. Progr. Phys. 12, 163 (1948).Google Scholar
12. Yabumoto, N., Minegishi, K., Sato, K., and Harada, H., Ultra Clean Technology 1, 13 (1990).Google Scholar
13. Smith, F. W. and Ghidini, G., J. Electrochem. Soc. 129, 1300 (1982).Google Scholar
14. Ghidini, G. and Smith, F. W., J. Electrochem. Soc. 131, 2924 (1984).Google Scholar
15. Miyawaki, M., Yositake, S., and Ohmi, T., IEEE Electron Device Lett. 11, 448 (1990).Google Scholar
16. Ohmi, T., Morita, M., Kochi, T., Kosugi, M., Kumagai, H. and Itoh, M., Appl. Phys. Lett. 52, 1173 (1988).Google Scholar
17. Ohmi, T., Morita, M., Tei, G., Kochi, T., Kosugi, M., Kumagai, H. and Itoh, M., J. Electrochem. Soc. 136, 3455 (1989).Google Scholar
18. Ohmi, T., Morita, M., and Hattori, T., in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, edited by Helms, C. R. and Deal, B. E., Plenum, New York, 1988. p.413.Google Scholar
19. Morita, M., Ohmi, T., and Hasegawa, E., Solid-State Electron. 33, 143 (1990).Google Scholar
20. Itoh, I., Mukaiyama, K., Ohmi, T., Morita, M., and Makihara, K., in Extended Abstracts of the 180th Electrochemical Society Meeting, Phoenix, 1991, p. 635.Google Scholar
21. Offenberg, M., Liehr, M., Rubloff, G. W., and Holloway, K., Appl. Phys. Lett. 57, 1254 (1990).Google Scholar