Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T16:56:32.200Z Has data issue: false hasContentIssue false

In Situ Characterisation of Model UK Nuclear Waste Glasses by X-ray Absorption Spectroscopy Under Process Conditions

Published online by Cambridge University Press:  01 February 2011

Neil C. Hyatt
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD. UK.
Andrew J. Connelly
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD. UK.
Martin C. Stennett
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD. UK.
Francis R. Livens
Affiliation:
Centre for Radiochemistry Research, Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL. UK.
Robert L. Bilsborrow
Affiliation:
STFC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD. UK.
Get access

Abstract

The local co-ordination environment of Zr in a model alkali borosilicate glass, of relevance to nuclear waste immobilisation, was studied by in situ X-ray absorption spectroscopy between 25 – 1060°C. Analysis of Zr K-edge XANES spectra, in comparison with those of well characterised standards, demonstrated, for the first time, the reversible transformation of ZrO6 to ZrO7 co-ordination polyhedra at high temperature. This observation was rationalised on the basis of the combined effects of network modifier cation diffusion and thermal expansion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lutze, W. and Ewing, R.C., “Nuclear wasteforms for the future”, Elsevier (1998).Google Scholar
2 Donald, I.W., Metcalfe, B.L. and R.Taylor, N.J., J. Mater. Sci., 32, 58515887 (1997).Google Scholar
3 Galoisy, L., Calas, G., Morin, G., Pugnet, S. and Fillet, C., J. Mat. Res. 13, 11241127 (1998).Google Scholar
4 Galoisy, L., Pelegrin, E., Arrio, M.A., Idldefonse, P. and Calas, G., J. Am. Ceram. Soc. 82, 22192224 (1999).Google Scholar
5 McKeown, D.A., Muller, I.S., Buechele, A.C. and Pegg, I.L., J. Non-Cryst. Solids 258, 98109 (1998).Google Scholar
6 Grand, M. Le, Ramos, A.Y., Calas, G., Galoisy, L., Ghaleb, D. and Pacaud, F., J. Mater. Res. 15, 20152019 (2000).Google Scholar
7 Calas, C., M. Le Grand, Galoisy, L. and Ghaleb, D., J. Nucl. Mater. 322, 1520 (2003).Google Scholar
8 McKeown, D.A., Kot, W.K. and Pegg, I.L., J. Non-Cryst. Solids 317, 290300 (2003).Google Scholar
9 Short, R.J., Hand, R.J., Hyatt, N.C. and Mobus, G., J. Nucl. Mater. 340, 179186 (2005).Google Scholar
10 Hyatt, N.C., Short, R.J., Hand, R.J., Lee, W.E., Livens, F.R. and Charnock, J.M., Ceram. Trans. 168, 179–178 (2005).Google Scholar
11 Cachia, J.N., Deschanels, X., Auwer, C. Den, Pinet, O., Phalippou, J., Hennig, C. and Scheinost, A., J. Nucl. Mater. 352, 182189 (2006).Google Scholar
12 Lukens, W.W., McKeown, D.A., Buechele, A.C., Muller, I.S., Shuh, D.K. and Pegg, I.L., Chem. Mater. 19, 559566 (2007).Google Scholar
13 Berry, A.J., Shelley, M.G., Foran, G.J., O'Neill, H.St.C. and Scott, D.R., J. Synchr. Rad. 10, 332336 (2003).Google Scholar
14 Farges, F., Brown, G.E., Calas, G., Galoisy, L., Waychunas, G.A., Geophys. Res. Lett., 21 19311934 (1994).Google Scholar
15 Brown, G.E., Farges, F. and Calas, G., Rev. in Miner. and Geochem. 32, 317409 (1995).Google Scholar
16 Connelly, A.J., PhD Thesis (University of Sheffield).Google Scholar
17 Smith, D.K. and Newkirk, H.W., Acta Cryst. 18, 983991 (1965).Google Scholar
18 Robinson, K., Gibbs, G.V. and Ribbe, P.H., Am. Miner. 56, 782790 (1971).Google Scholar
19 Ghose, S. and Wan, C., Am. Miner. 63, 304310 (1978).Google Scholar
20 Farges, F., Chem. Geol. 127, 253268 (1996).Google Scholar
21 Meneghini, C., Mobilio, S., Lusvarghi, L., Bondioli, F., Ferrari, A.M., Manfredinic, T. and Siligardic, C., J. Appl. Cryst. 37, 890900 (2004).Google Scholar
22 Farges, F., Ponander, C.W. and Brown, G.E., Geochim. et Cosmochim. Acta 55, 15631574 (1991).Google Scholar