Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T10:49:45.212Z Has data issue: false hasContentIssue false

Improving the Efficiency of Organic Photovoltaic Devices through Interface Engineering

Published online by Cambridge University Press:  31 July 2013

Feilong Liu
Affiliation:
University of Minnesota, Minneapolis, MN 55455, U.S.A. Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Brian K. Crone
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Paul Ruden
Affiliation:
University of Minnesota, Minneapolis, MN 55455, U.S.A. Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Darryl L. Smith
Affiliation:
University of Minnesota, Minneapolis, MN 55455, U.S.A. Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Get access

Abstract

We explore theoretically the effect of incorporating a thin tunnel barrier between the electron and hole transport layers of organic heterostructure photovoltaic devices. The device efficiency can be improved significantly by controlling the rates of microscopic processes associated with exciton dissociation and recombination at the interface between the electron and hole transport layers. The effects of different parameters are examined, and conclusions for organic photovoltaic device design are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hoppe, H. and Sariciftci, N. S., J. Mater. Res. 19, 1924 (2004).CrossRefGoogle Scholar
Nunzi, J.-M., C. R. Physique 3, 523 (2002).CrossRefGoogle Scholar
Forrest, S. R., MRS Bulletin 30, 28 (2005).CrossRefGoogle Scholar
Dennler, G., Scharber, M. C., and Brabec, C. J., Adv. Mater. 21, 1323 (2009).CrossRefGoogle Scholar
Zhuang, T., Su, Z., Liu, Y., Chu, B., Li, W., Wang, J., Jin, F., Yan, X., Zhao, B., Zhang, F., and Fan, D., Appl. Phys. Lett. 100, 243902 (2012).CrossRefGoogle Scholar
Chen, W., Xiang, H., Xu, Z., Yan, B., Roy, V. A. L., and Che, C., Appl. Phys. Lett. 91, 191109 (2007).CrossRefGoogle Scholar
Onsager, L., Phys. Rev. 54, 554 (1938).CrossRefGoogle Scholar
Braun, C. L., J. Chem. Phys. 80, 4157 (1984).CrossRefGoogle Scholar
Campbell, I. H. and Crone, B. K., Appl. Phys. Lett. 101, 023301 (2012).CrossRefGoogle Scholar
Crone, B. K., Davids, P. S., Campbell, I. H., and Smith, D. L., J. Appl. Phys. 87, 1974 (2000).CrossRefGoogle Scholar
Liu, F., Ruden, P. P., Campbell, I. H., and Smith, D. L., J. Appl. Phys. 111, 094507 (2012).CrossRefGoogle Scholar
Chu, C., Shao, Y., Shrotriya, V., and Yang, Y., Appl. Phys. Lett. 86, 243506 (2005).CrossRefGoogle Scholar
Veldman, D., Ìpek, Ö., Meskers, S. C., Sweelssen, J., Koetse, M. M., Veenstra, S. C., Kroon, J. M., van Bavel, S. S., Loos, J., and Janssen, R. A. J., J. Am. Chem. Soc. 130, 7721 (2008).CrossRefGoogle Scholar
Wappelt, A., Bergmann, A., Napiwotzki, A., Eichler, H. J., Jüpner, H. J., Kummrow, A., Lau, A., and Woggon, S., J. Appl. Phys. 78, 5192 (1995).CrossRefGoogle Scholar
Brabec, C. J., Sariciftci, N. S., and Hummelen, J. C., Adv. Funct. Mater. 11, 15 (2001).3.0.CO;2-A>CrossRefGoogle Scholar
Giebink, N. C., Lassiter, B. E., Wiederrecht, G. P., Wasielewski, M. R., and Forrest, S. R., Phys. Rev. B 82, 155306 (2010).CrossRefGoogle Scholar
Pope, M. and Swenberg, C. E., Electronic Processes in Organic Crystals and Polymers (Oxford University Press, New York, 1999).Google Scholar
Liu, F., Crone, B. K., Ruden, P. P., and Smith, D. L., J. Appl. Phys. 113, 044516 (2013).CrossRefGoogle Scholar
Matsui, A., J. Opt. Soc. Am. B 7, 1615 (1990).CrossRefGoogle Scholar
Vaubel, G. and Bässler, H., Mol. Cryst. Liq. Cryst. 12, 47 (1970).CrossRefGoogle Scholar
Silinsh, E. A. and Capek, V., Organic Molecular Crystals (American Institute of Physics, New York, 1994).Google Scholar
Hutchinson, D. A., Acta. Cryst. 15, 949 (1962).CrossRefGoogle Scholar
Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes (Academic Press, 1996).Google Scholar
Maniadis, P., Lookman, T., Saxena, A., and Smith, D. L., Phys. Rev. Lett. 108, 257802 (2012).CrossRefGoogle Scholar