Skip to main content Accessibility help
×
Home

Improvements of Thermoelectric Performances in AgSbTe2 System With in-situ Ag2Te Nano-Precipitations

  • Shengnan Zhang (a1), Shenghui Yang (a2), Guangyu Jiang (a3), Junjie Shen (a4), Tiejun Zhu (a5) and Xinbing Zhao (a6)...

Abstract

AgSbTe2 is the critical component in both LAST-m and TAGS-x system, which are two state-of-the-art mid-temperature thermoelectric bulk nanocomposites. By adjusting the Ag2Te/Sb2Te3 ratio, Sb2Te3 and Ag2Te precipitated samples were obtained with x = 0.68 to 0.74 and x = 0.84 to 0.90 (x as in (Ag2Te)x/2(Sb2Te3)1-x/2), respectively. The single phased AgSbTe2 was obtained with the x value of 0.78 and 0.81, which is consistent of the previous results on the phase diagram of (Ag2Te)x(Sb2Te3)1-x system. Comparing the effect of the two different precipitates, Ag2Te are much effective for the improvements of thermoelectric properties in AgSbTe2 nanocomposites. Utilizing the high-resolution transmission electron microscopy, Ag2Te was observed as nanodots and nano-lamellae embedded in the AgSbTe2 matrix, which can be related to the energy filtering effect for the increase of Seebeck coefficient. The relationship among the composition, microstructure and thermoelectric properties was systematically studied. It can be noticed that the thermoelectric properties of AgSbTe2 system are very sensitive to the composition, especially at low temperature. The maximum figure of merit ZT value of 1.53 was obtained at 500 K for Ag0.84Sb1.16Te2.16 with 40% increase comparing with the single phased sample.

Copyright

References

Hide All
1 Rowe, D. M., CRC handbook of Thermoelectrics, (CRC, Boca Raton, FL, 1995).
2 Tritt, T. M. Science 283, 804 (1999).
3 Sootsman, J. R. Kong, H. Uher, C. D'Angelo, J. J., Wu, C. I. Hogan, T. P. Caillat, T. and Kanatzidis, M. G. Angew. Chem. Int. Ed. 47 (45), 8618 (2008).
4 Vashaee, D. and Shakouri, A. Phys. Rev. B92, 106103 (2004).
5 Heremans, J. P. Thrush, C. M. and Morelli, D. T. J. Appl. Phys 98 (6), 063703 (2005).
6 Zhang, Q. He, J. Zhu, T. J. Zhang, S. N. Zhao, X. B. and Tritt, T. M. Appl. Phys. Lett 93, 185103 (2008).
7 Hsu, K. F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. and Kanatzidis, M. G. Science 303, 818 (2004).10.1126/science.1092963
8 Androulakis, J. Hsu, K. F. Pcionek, R. Kong, H. Uher, C. D'Angelo, J. J., Downey, A. Hogan, T. and Kanatzidis, M. G. Adv. Mater. 18 (9), 1170 (2006).
9 Barabash, S. V. Ozolins, V. and Wolverton, C., Phys. Rev. Lett. 101, 155704 (2008).
10 Cook, B. A. Kramer, M. J. Harringa, J. L. Han, M.K. Chung, D. Y. and Kanatzidis, M. G. Adv. Func. Mater. 19, 1 (2009).
11 Han, M. K. Hoang, K. Kong, H. J. Pcionek, R. Uher, C. Paraskevopoulos, K. M. Mahanti, S. D. and Kanatzidis, M. G. Chem. Mater. 20, 3512 (2008).
12 Wu, L. Zheng, J. Zhou, J. Li, Q. Yang, J. and Zhu, Y. J. Appl. Phys. 105, 094317 (2009).
13 Skrabek, E. A. and Trimmer, D. S. CRC Handbook of Thermoelectrics, ed. Rowe, D.M., (CRC Press, Boca Raton, FL, 1995) pp. 267.
14 Yang, S. H. Zhu, T. J. Sun, T. He, J. Zhang, S. N. and Zhao, X. B. Nanotechnology 19, 245707 (2008).
15 Wernick, J. H. and Benson, K. E. J. Phys. Chem. Solids 3 (1-2), 157 (1957).
16 Matsushita, H. Hagiwara, E. and Katsui, A. J. Mater. Sci. 39, 62996301 (2004).
17 Wang, H. Li, J. F. Zou, M. and Sui, T. Appl. Phys. Lett 93, 202106 (2008).
18 Irie, T. Takahama, T. and Oho, T. Jpn. J. Appl. Phys. 2, 7282 (1963).
19 Armstrong, R. W. Faust, J. W. Jr. and Tiller, W. A. J. Appl. Phys. 31, 1954 (1960); T. Ikeda V. A. Ravi and G. J. Snyder Acta Materialia 57, 666 (2009).
20 Zhang, S.N. Zhu, T.J. Yang, S.H. Yu, C. and Zhao, X.B. J. Alloy. Compd. (Published online doi: 10.1016/j.jallcom.2010.03.170).
21 Fujikane, M. Kurosaki, K. Muta, H. and Yamanaka, S. J. Alloy and Comp. 393, 299 (2005).
22 Majer, R. G. Zeitschrift Fur Metallkunde 54, 311 (1963).
23 Nishio, Y. and Hirano, T. Jpn. J. Appl. Phys. 36, 170174 (1996).
24 Zide, J. M. Klenov, D. O. Stemmer, S. Gossard, A. C. Zeng, G. Bowers, J. E. Vashaee, D. and Shakouri, A. Appl. Phys. Lett. 87, 112102 (2005).

Keywords

Improvements of Thermoelectric Performances in AgSbTe2 System With in-situ Ag2Te Nano-Precipitations

  • Shengnan Zhang (a1), Shenghui Yang (a2), Guangyu Jiang (a3), Junjie Shen (a4), Tiejun Zhu (a5) and Xinbing Zhao (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed