Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T03:28:02.823Z Has data issue: false hasContentIssue false

Improvement of Durability in Silicon Nitride Barrier Films for Flexible OLED Displays under High Temperature and High Humidity Conditions

Published online by Cambridge University Press:  01 February 2011

Kunio Akedo
Affiliation:
akedo@mosk.tytlabs.co.jp, TOYOTA Central R&D Labs., Inc., Optical Device&System Lab., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
Atsushi Miura
Affiliation:
a-miura@mosk.tytlabs.co.jp, TOYOTA Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
Koji Noda
Affiliation:
e0657@mosk.tytlabs.co.jp, TOYOTA Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
Hisayoshi Fujikawa
Affiliation:
e0888@mosk.tytlabs.co.jp, TOYOTA Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
Get access

Abstract

We have developed a new silicon nitride (SiNx) multilayer barrier film by a plasma-enhanced chemical vapor deposition (CVD) for a flexible organic light emitting diode (OLED), which consists of SiNx films in two different deposition conditions, that is, a transparent SiNx layer (tr-SiNx) deposited with NH3 gas and an ultra-thin SiNx layer (cap-SiNx) deposited without NH3 gas, which caps over the former layer. This barrier film is expected to exhibit high durability under high temperature and high humidity conditions even at high deposition rate over 100 nm / minute, because the transparent SiNx layer, that is easily oxidized under such conditions, is protected by the cap-SiNx layer and the interface between them, and also show good transparency, because the opaque cap-SiNx layer is enough thin to be almost transparent to visible light. Thus, the multi-layer SiNx barrier film indicates the specific features as a high barrier performance, high transparency, and high productivity, and makes it possible to apply flexible OLED displays to automobile use.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tang, C. W. and Slyke, S. A. Van, Appl. Phys. Lett. 51, 913 (1987).10.1063/1.98799Google Scholar
2. Ikai, M., Tokito, S., Sakamoto, Y., Suzuki, T., and Taga, Y., Appl. Phys. Lett. 79, 156 (2001).Google Scholar
3. He, G., Pfeiffer, M., Leo, K., Hofmann, M., Birnstock, J., Pudzich, R., and Salbeck, J., Appl. Phys. Lett. 85, 3911 (2004).10.1063/1.1812378Google Scholar
4. Lin, M. F., Wang, L., Wong, W. K., Cheah, K. W., TAM, H. L., Lee, M. T., Ho, M. H., and Chen, C. H., Appl. Phys. Lett. 91, 073517 (2007).10.1063/1.2769762Google Scholar
5. Burrows, P. E., Graff, G. L., Gross, M. E., Martin, P. M., Shi, M. K., Hall, M., Mast, E., Bonham, C., Bennett, W., and Sullivan, M. B., Displays 22, 65 (2001).10.1016/S0141-9382(00)00064-0Google Scholar
6. Sugimoto, A., Yoshida, A., Miyadera, T., and Miyaguchi, S., Proceeding of The 10th International Workshop on Inorganic and Organic Electroluminescence (EL'00), 365 (2000).Google Scholar
7. Ghosh, A. P., Gerenser, L. J., Jarman, C. M., and Fornalik, J. E., Appl. Phys. Lett. 86, 223503 (2005).10.1063/1.1929867Google Scholar
8. Kubota, H., Miyaguchi, S., Ishizuka, S., Wakimoto, T., Funaki, J., Fukuda, Y., Watanabe, T., Ochi, H., Sakamoto, T., Miyake, T., Tsuchida, M., Ohshita, I., and Tohma, T., Journal of Luminescence 87–89, 56 (2000).Google Scholar
9. Akedo, K., Miura, A., Fujikawa, H., and Taga, Y., SID2003 DIGEST 34, 559 (2003).10.1889/1.1832337Google Scholar
10. Akedo, K., Miura, A., Fujikawa, H., Taga, Y., Akada, Y., and Umehara, T., Proceedings of The 11th International Display Workshops (IDW'04), 1367 (2004).Google Scholar