Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T04:19:22.955Z Has data issue: false hasContentIssue false

Improvement in the Activation Efficiency of Implanted Si in GaAs using Oxygen Plasma Pretreatment

Published online by Cambridge University Press:  25 February 2011

Jaeshin Cho
Affiliation:
Compound Semiconductor-1, Motorola Inc., Tempe, Arizona 85284
Leszek M. Pawlowicz
Affiliation:
Compound Semiconductor-1, Motorola Inc., Tempe, Arizona 85284
Naresh C. Saha
Affiliation:
Semiconductor Analytical Laboratory, Motorola Inc., Mesa, Arizona 85202
Get access

Abstract

We have investigated the effect of GaAs surface conditions prior to plasma enhanced chemical vapor deposition of a silicon nitride cap on the activation efficiency of implanted Si in GaAs. The oxygen plasma treatment improved the activation efficiency of implanted Si by ∼35% over (1:10) NH4OH:H2O treatment. X-ray photoelectron spectroscopy (XPS) analysis of the oxygen plasma treated GaAs surface indicated the formation of ∼25Å thick oxide layer consisting of Ga2O3, As2O3, As2O5 and elemental As. During the activation anneal, the arsenic-containing oxides react with the GaAs substrate to form Ga2O3 and elemental As. The presence of excess As between the GaAs and the nitride cap film increases the probability that the implanted Si incorporates in the Ga sites over the As sites, and thereby improves the activation efficiency. This surface-related mechanism suggests that the variation in activation efficiency is mostly attributed to variation in surface conditions, and may explain the wide variety of reported values of activation efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Souza, J.P. de and Sadana, D.K., IEEE Trans. Electron Devices ED–39, 166 (1992).Google Scholar
2. Tabatabaie-Alavi, K. and Smith, I.W., IEEE Trans. Electron Devices ED–37, 96 (1990).Google Scholar
3. Gill, S.S., J. Electrochem. Soc. 135, 1027 (1988).Google Scholar
4. Gill, S.S. and Sealy, B.J., J. Electrochem. Soc. 133, 2590 (1986).Google Scholar
5. Kuzuhara, M., Nozaki, T., and Kohzu, H., J. Appl. Phys. 58, 1204 (1985).CrossRefGoogle Scholar
6. Otsuki, T., J. Appl. Phys. 61, 928 (1987).Google Scholar
7. Vanasupa, L.S., Deal, M.D., and Plummer, J.D., Appl. Phys. Lett. 55, 274 (1989).Google Scholar
8. Dobrilla, P., J. Appl. Phys. 67, 2831 (1990).Google Scholar
9. Christ, R.S., Proc. of U.S. Conf. on GaAs Manufacturing Tech., 1989, p.44.Google Scholar
10. Chang, C.C., Citrin, P.H., and Schwartz, B., J. Vac. Sci. Technol. 14, 943 (1977).Google Scholar
11. Vasquez, R.P., Lewis, B.F., and Grunthaner, F.J., Appl. Phys. Lett. 42, 293 (1983).Google Scholar
12. Thurmond, C.D., Schwartz, G.P., Kammlott, G.W., and Schwartz, B., J. Electrochem. Soc. 127, 1366 (1980).Google Scholar
13. McDevitt, N.T. and Solomon, J.S., J. Electrochem. Soc. 133, 1913 (1986).CrossRefGoogle Scholar
14. Christel, L.A. and Gibbons, J.F., J. Appl. Phys. 52, 5050 (1981).Google Scholar
15. Lee, J.-L., Kim, J.S., Park, H.M., Ma, D.S., Tanigawa, S., and Uedono, A., Appl. Phys. Lett. 53, 1302 (1988).Google Scholar
16. Lee, J.-L., Wei, L., Tanigawa, S., Nakagawa, T., Ohta, K., and Lee, J.Y., IEEE Trans. Electron Devices ED–39, 176 (1992).Google Scholar