Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-21T02:36:04.377Z Has data issue: false hasContentIssue false

Improved Thermal Stability of Ultrathin CoSi2 Layers by Oxygen Annealing

Published online by Cambridge University Press:  10 February 2011

R. T. Tung
Affiliation:
Lucent Technologies Bell Labs., Murray Hill, N.J. 07974
S. Ohmi
Affiliation:
Lucent Technologies Bell Labs., Murray Hill, N.J. 07974
Get access

Abstract

The thermal stability of thin CoSi2 layers is demonstrated to improve with the use of oxygen-containing annealing ambients. Layer agglomeration in epitaxial and polycrystalline CoSi2 layers grown on single crystal Si and polycrystalline CoSi2 layers grown on α-Si was retarded by oxygen annealing. A thin SiO2 layer grown during oxygen anneals which curbs surface diffusion and reduces the rates of kinetic processes is thought to be the primary reason for the improvement in CoSi2 thermal stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maex, M., Mat. Sci. Eng. R 11, 53 (1993).Google Scholar
2. Nygren, S. and Johansson, S., J. Appl. Phys. 68, 1050 (1990).10.1063/1.346744Google Scholar
3. Osbum, C. M., Wang, Q. F., Kellam, M., Canovai, C., Smith, P. L., McGuire, G. E., Ziao, Z. G., and Rozgonyi, G. A., Appl. Surf. Sci. 53, 291 (1991).Google Scholar
4. Berti, A. C. and Bolkhovsky, V., VMIC 1992.Google Scholar
5. Tung, R. T. and Schrey, F., Appl. Phys. Lett. 67, 2164 (1995).Google Scholar
6. Tung, R. T., Appl. Phys. Lett. 61, 3461 (1996).Google Scholar
7. Bartur, M. and Nicolet, M. -A., Appl. Phys. A 29, 69 (1982).Google Scholar
8. Huang, G. J. and Chen, L. J., J. Appl. Phys. 76, 865 (1994).Google Scholar
9. Inoue, K., Tung, R. T., Mikagi, K., Chikaki, S., and Kikkawa, T., MRS Symp. Proc. 440, 435 (1997).Google Scholar
10. Vaidya, S., Murarka, S. P., and Sheng, T. T., J. Appl. Phys. 58, 971 (1985).Google Scholar
11. Tung, R. T. and Batstone, J. L., Appl. Phys. Lett. 52, 648 (1988).Google Scholar