Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-06T21:43:19.279Z Has data issue: false hasContentIssue false

Improved electroluminescence lifetime and efficiency of polymer light- emitting diodes with plasma-treated indium tin oxide anodes

Published online by Cambridge University Press:  10 February 2011

J. S. Kim
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, UK
R. H. Friend
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, UK
F. Cacialli
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, UK
Get access

Abstract

We studied the influence of various surface treatments of indium-tin oxide anodes on the operational stability of high-efficiency green-emitting polymer light-emitting diodes, fabilicated with a doped poly(3,4-ethylene dioxythiophene) PEDOT hole transport layer, a polyfluorene-based emissive layer, and Ca-Al cathodes. The anodes were modified by physical (oxygen-plasma), chemical (aquaregia), or combined treatments. Oxygen-plasma improves the stability under constant current over all the other anodes, with half-brightness lifetimes (initial brightness, 200 cd/m2) two to five times longer than for untreated samples, and 1000 times longer than for aquaregia ones. We derive two major indications for optimisation of PLEDs. First, thermal management of the diode is of the uppermost importance. Second, the ITO anode and in general the electrical properties of the hole-injecting contact are crucial to device operation, even in the presence of a hole transport layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cacialli, F., Friend, R.H., Moratti, S.C. and Holmes, A.B., Synth. Met. 67, 157 (1994).Google Scholar
2. Scott, J.C., Kaufman, J.H., Salem, J., Goitia, J.A., Brock, P.J. and Dipietro, R., Molecular Cryst. & Liq. Cryst. Sci. & Technology Section A – Molecular Cryst. & Liq. Cryst. 283, 57 (1996).Google Scholar
3. Vanslyke, S.A., Chen, C.H. and Tang, C.W., Appl. Phys. Lett. 69, 2160 (1996).Google Scholar
4. Staring, E.G.J., Phil. Trans. R. Soc. Lond. A 355, 695 (1997).Google Scholar
5. Carter, S.A., Angelopoulos, M., Karg, S., Brock, P.J. and Scott, J.C., Appl. Phys. Lett. 70, 2067 (1997).Google Scholar
6. Carter, J.C., Grizzi, I., Heeks, S.K., Lacey, D.J., Latham, S.G., May, P.G., delospanos, O.R., Pichler, K., Towns, C.R. and Wittmann, H.F., Appl. Phys. Lett. 71, 34 (1997).Google Scholar
7. Berntsen, A., Croonen, Y., Liedenbaum, C., Schoo, H., Visser, R.J., Vleggaar, J. and Vandeweijer, P., Optic. Mater. 9, 125 (1998).Google Scholar
8. Broms, P., Birgersson, J., Johansson, N., Logdlund, M. and Salaneck, W.R., Synth. Met. 74, 179 (1995).Google Scholar
9. Hung, L.S., Tang, C.W. and Mason, M.G., Appl. Phys. Lett. 70, 152 (1997).Google Scholar
10. Karg, S., Scott, J.C., Salem, J.R. and Angelopoulos, M., Synth. Met. 80, 111 (1996).Google Scholar
11. Shirota, Y., Kuwabara, Y., Inada, H., Wakimoto, T., Nakada, H., Yonemoto, Y., Kawami, S. and Imai, K., Appl. Phys. Lett. 65, 807 (1994).Google Scholar
12. Esselink, F.J. and Hadziioannou, G., Synth. Met. 75, 209 (1995).Google Scholar
13. Schlatmann, A.R., Floet, D.W., Hilberer, A., Garten, F., Smulders, P.J.M., Klapwijk, T.M. and Hadziioannou, G., Appl. Phys. Lett. 69, 1764 (1996).Google Scholar
14. Kim, J.S., Granström, M., Friend, R.H., Johansson, N., Salaneck, W.J., Daik, R., Feast, W.J. and Cacialli, F., J. Appl. Phys. 84, 68596870 (1998).Google Scholar
15. Kim, J. S., Friend, R. H., and Cacialli, F., J. Appl. Phys. 86, 27742778 (1999).Google Scholar