Skip to main content Accessibility help

Impact of growth parameters on the formation of carbon nanostructures through thermal deposition of silicon carbide

  • Munson Anderson (a1), Michael Pochet (a1), Benji Maruyama (a2), Pavel Nikolaev (a2), Elizabeth Moore (a2) and John Boeckl (a2)...


Carbon nanotube (CNT) and graphene films form on silicon carbon (SiC) using a metal-catalyst-free thermal decomposition approach. In this work, the growth conditions used in the decomposition process are varied to investigate their impact on the type and quality of carbon allotrope formed on the SiC substrate. The nanostructure growth is performed using two approaches, both of which involve intense heating (1250-1700oC) under moderate vacuum conditions (10-2 – 10-5 Torr) without the aid of carbon rich feed gases or metal catalysts commonly used in Chemical Vapor Deposition (CVD) growth approaches. The first growth method uses a graphite resistance furnace capable of annealing wafer-sized samples. The second approach uses a high-intensity laser to heat a micro-meter scale spot size. The high-intensity laser heats the illuminated area of the SiC substrate while under vacuum conditions, resulting in a small-scale growth process similar to the conventional resistance furnace technique. Unique to this micro-scale approach is that in situ Raman spectroscopy is performed yielding instantaneous characterization of the resultant carbon nanostructure as it is formed. The laser-induced growth mechanism enables the impact of varied background vacuum pressures and temperatures to be evaluated in situ. This work reports the findings for various parameter sets implemented during growth, and provides insight into the physical mechanism influencing the growth process.



Hide All
1. Geim, A. K. and Novoselov, K. S., Nat. Mater. 6(3), 183191 (2007).
2. Dresselhaus, M. S., Dresselhaus, G., and Avouris, P., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer (2001).
3. Dresselhaus, M. S., Jorio, A., and Saito, R., Annu. Rev. Condens. Matter Phys. 1(1), 89108 (2010).
4. Song, Y. and Smith, F. W., Appl. Phys. Lett. 81(16), 3061 (2002).
5. Kusunoki, M., Suzuki, T., Kaneko, K., and Ito, M., Philos. Mag. Lett. 79(4), 153161 (1999).
6. Mitchel, W. C., Boeckl, J., Tomlin, D., Lu, W., Rigueur, J., and Reynolds, J., Quantum Sensing and Nanophotonic Devices II 5732, 7783 (2005).
7. Pochet, M., Campbell, J., Coutu, R., Fairchild, S., Boeckl, J., Materials Research Society Fall Proceedings W3.42 (2012).
8. Rao, R., Pierce, N., Liptak, D., Hooper, D., Sargent, G., Semiatin, S. L., Curtarolo, S., Harutyunyan, A. R., and Maruyama, B., ACS Nano 7(2), 11001107 (2013).
9. Maruyama, T. and Naritsuka, S., Carbon Nanotubes - Synthesis, Characterization, Applications, Intech Open, 29-46 (2011).
10. Torres-Torres, C., Peréa-López, N., Martínez-Gutiérrez, H., Trejo-Valdez, M., Ortíz-López, J., and Terrones, M., Nanotechnology 24(4), 45201 (2013).
11. Zdrojek, M., Gebicki, W., Jastrzebski, C., Melin, T., and Huczko, A., Solide State Phenom. 99(265), 25 (2004).
12. Antunes, E. F., Lobo, a. O., Corat, E. J., and Trava-Airoldi, V. J., Carbon N. Y. 45(5), 913921 (2007).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed