Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T10:28:38.318Z Has data issue: false hasContentIssue false

Impact Excitation And Auger Quenching Processes In Er Doped Light Emitting Si Devices

Published online by Cambridge University Press:  10 February 2011

G. Franzo'
Affiliation:
CNR – IMETEM, Stradale Primosole 50, 195121 Catania (Italy)
F. Priolo
Affiliation:
INFM and Dipartimento di Fisica dell'Università, Corso Italia 57,195129 Catania (Italy)
S. Coffa
Affiliation:
CNR – IMETEM, Stradale Primosole 50, 195121 Catania (Italy)
Get access

Abstract

A detailed investigation of the Auger non radiative de-excitation processes, which compete with the radiative emission of Er in Si, will be presented. This process, in which the energy released by the Er de-excitation is transferred to free carriers, is demonstrated to be extremely efficient and characterized by an Auger coefficient CA˜4.4×l0−13 cm3/s. This Auger process and an efficient incorporation method have been used to improve the performances of Er implanted light emitting diodes. It will be shown that by exciting Er within the depletion region of reverse biased p+-n+ Si diodes in the breakdown regime, it is possible to avoid Auger quenching and to achieve high efficiency. Moreover, at the switch off of the diode, when the depletion region shrinks, the excited Er ions become suddenly embedded within the neutral heavily doped region. In this region Auger de-excitation with free carriers sets in allowing to modulate the light signal at frequencies as high as a few MHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983)Google Scholar
2. Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W., and Schneider, J., Appl. Phys. Lett. 46, 381 (1985)Google Scholar
3. Coffa, S., Priolo, F., Franzò, G., Bellani, V. Camera, A. and Spinella, C., Phys. Rev. B 48, 11782 (1993)Google Scholar
4. Priolo, F., Franzò, G., Coffa, S., Polman, A., Libertino, S., Barklie, R., and Carey, D., J. Appl. Phys. 78, 3874 (1995)Google Scholar
5. Libertino, S., Coffa, S., Franzò, G., and Priolo, F., J. Appl. Phys. 78, 3867 (1995)Google Scholar
6. Franzò, G., Priolo, F., Coffa, S., Polman, A., and Camera, A., Appl. Phys. Lett. 64, 2235 (1994)Google Scholar
7. Zheng, B., Michel, J., Ren, F.Y.G., Kimerling, L.C., Jacobson, D.C., and Poate, J.M., Appl. Phys. Lett. 64, 2842 (1994)Google Scholar
8. Stimmer, J., Reittinger, A., Nutzel, J.F., Abstreiter, G., Holzbrecher, H., and Buchal, Ch., Appl. Phys. Lett. 68, 3290 (1996)Google Scholar
9. Du, C.-X., Ni, W.-X., Joelsson, K.B., and Hansson, G.V., Appl. Phys. Lett. 71, 1023 (1997)Google Scholar
10. Franzò, G., Coffa, S., Priolo, F., and Spinella, C., J. Appl. Phys. 81, 2784 (1997)Google Scholar
11. Langer and Le Van Hong, J.M., J. Phys. C 17, L923 (1984)Google Scholar
12. Suchocki, A. and Langer, J.M., Phys. Rev. B 39, 7905 (1989)Google Scholar
13. Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L.C., Phys. Rev. B 54, 17603 (1996)Google Scholar