Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T03:45:16.130Z Has data issue: false hasContentIssue false

Imogolite as a Material for Fabrication of Inorganic Membranes

Published online by Cambridge University Press:  25 February 2011

Jeffrey C. Huling
Affiliation:
UNM/NSF Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque, NM 87131
Joseph K. Bailey
Affiliation:
Sandia National Laboratories, Ceramic Synthesis and Inorganic Chemistry Department, Albuquerque, NM 87185
Douglas M. Smith
Affiliation:
UNM/NSF Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque, NM 87131
C. Jeffrey Brinker
Affiliation:
Sandia National Laboratories, Ceramic Synthesis and Inorganic Chemistry Department, Albuquerque, NM 87185
Get access

Abstract

Imogolite is a structurally microporous tubular clay comprising one-dimensional pore channels that are 0.8 – 1.2 nm in diameter, depending on composition. The microporous structure of natural and synthetic imogolite has been investigated by nitrogen adsorption as a function of outgassing temperature. A significant increase in adsorption at low relative pressure (P/P0 ∼ 10-6) after 275°C outgassing reflects a high concentration and narrow distribution of 0.8 – 0.9 nm diameter pores (i.e., the imogolite tubes) and supports the potential use of imogolite in inorganic membrane applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cradwick, P. D. G., Farmer, V. C., Russell, J. D., Masson, C. R., Wada, K., and Yoshinaga, N., Nature Phys. Sci. 240, 187 (1972).CrossRefGoogle Scholar
2. Farmer, V. C., Adams, M. J., Fraser, A. R., and Palmieri, F., Clay Minerals 18, 459 (1983).CrossRefGoogle Scholar
3. Johnson, I. D., Werpy, T. A., and Pinnavaia, T. J., J. Am. Chem. Soc. 110, 8545 (1988).CrossRefGoogle Scholar
4. Johnson, L. M. and Pinnavaia, T. J., Langmuir 6, 307 (1990).CrossRefGoogle Scholar
5. Johnson, L. M. and Pinnavaia, T. J., Langmuir 7, 2636 (1991).CrossRefGoogle Scholar
6. Werpy, T. A., Michot, L. J., and Pinnavaia, T. J., in Novel Materials in Heterogeneous Catalysis, edited by Baker, R. T. K. and Murrell, L. L. (American Chemical Society, Washington, D.C., 1990), pp. 119128.CrossRefGoogle Scholar
7. MacKenzie, K. J. D., Bowden, M. E., Brown, I. W. M., and Meinhold, R. H., Clays and Clay Minerals 37, 317(1989).CrossRefGoogle Scholar
8. van der Gaast, S. J., Wada, K., Wada, S. I., and Kakuto, Y., Clays and Clay Minerals 33, 237 (1985).CrossRefGoogle Scholar
9. Egashira, K. and Aomine, S., Clay Science 4, 231 (1974).Google Scholar
10. Adams, M. J., J. Chromatog. 188, 97 (1980).CrossRefGoogle Scholar
11. Wada, K. and Henmi, T., Clay Science 4, 127 (1972).Google Scholar
12. Farmer, V. C. and Fraser, A. R., in International Clay Conference 1978, edited by Mortland, M. M. and Farmer, V. C. (Elsevier Science Publishers, Amsterdam, 1979), pp. 547553.Google Scholar
13. Wada, K., Am. Mineral. 52, 690 (1967).Google Scholar
14. Wada, K., Clay Minerals 8, 487 (1970).CrossRefGoogle Scholar
15. Horvath, G. and Kawazoe, K., J. Chem. Engr. Japan 16, 470 (1983).CrossRefGoogle Scholar
16. Saito, A. and Foley, H. C., AIChE Journal 37, 429 (1991).CrossRefGoogle Scholar