Skip to main content Accessibility help
×
Home

Imaging Cellular and Viral Materials with Small Cantilevers Developed for High Speed Atomic Force Microscopy

  • Georg Fantner (a1), Tzvetan Ivanov (a2), Katerina Ivanova (a3), David Gray (a4), Ivo W Rangelow (a5), Paul K Hansma (a6) and Angela M Belcher (a7)...

Abstract

High speed atomic force microscopy (AFM) holds the promise of investigating dynamic systems in real time with single molecule resolution. With the big push towards understanding more complex systems such as cell mechanics or cell-cell and cell-virus interactions, a tool is required that can extract information about these processes in real time in a physiological environment. Atomic force microscopy has been successfully used for investigations of many biological systems and materials in real life conditions, but taking AFM images takes too long to follow many biologically relevant processes. Therefore, attempts have been made to develop high speed AFM by reengineering all the components of an AFM system and much progress has been made. To be useful for investigations of biological systems however, it is often essential to keep imaging forces low in order to get good image quality and not to damage the sample. In this paper we will discuss new small AFM cantilevers we've developed to combine high resonance frequencies for faster imaging with low spring constants for gentle imaging.

Copyright

References

Hide All
1. Barrett, R. C. and Quate, C. F., High-speed, large-scale imaging with the atomic force microscope. Journal of Vacuum Science & Technology B, 1991. 9 (2): p. 302306.
2. Horber, J. K. H., Haberle, W., Ohnesorge, F., Binnig, G., Liebich, H. G., Czerny, C. P., Mahnel, H., and Mayr, A., Investigation of living cells in the nanometer regime with the scanning force microscope. Scanning Microscopy, 1992. 6 (4): p. 919930.
3. Ivanov, T., Gotszalk, T., Sulzbach, T., Chakarov, I., and Rangelow, I. W., Afm cantilever with ultra-thin transistor-channel piezoresistor: Quantum confinement. Microelectronic Engineering, 2003. 67–8: p. 534541.
4. Linnemann, R., Gotszalk, T., Hadjiiski, L., and Rangelow, I. W., Characterization of a cantilever with an integrated deflection sensor. Thin Solid Films, 1995. 264 (2): p. 159164.
5. Manalis, S. R., Minne, S. C., Atalar, A., and Quate, C. F., High-speed atomic force microscopy using an integrated actuator and optical lever detection. Review of Scientific Instruments, 1996. 67 (9): p. 32943297.
6. Pedrak, R., Ivanov, T., Ivanova, K., Gotszalk, T., Abedinov, N., Rangelow, I. W., Edinger, K., Tomerov, E., Schenkel, T., and Hudek, P., Micromachined atomic force microscopy sensor with integrated piezoresistive, sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes. Journal of Vacuum Science & Technology B, 2003. 21 (6): p. 31023107.
7. Ookubo, N. and Yumoto, S., Rapid surface topography using a tapping mode atomic force microscope. Applied Physics Letters, 1999. 74 (15): p. 21492151.
8. Wong, T. M. H. and Welland, M. E., A digital-control system for scanning tunneling microscopy and atomic force microscopy. Measurement Science & Technology, 1993. 4 (3): p. 270280.
9. Yumoto, S. and Ookubo, N., Fast imaging method combining cantilever and feedback signals in contact-mode atomic force microscopy. Applied Physics a-Materials Science & Processing, 1999. 69 (1): p. 5154.
10. Uchihashi, T., Kodera, N., Itoh, H., Yamashita, H., and Ando, T., Feed-forward compensation for high-speed atomic force microscopy imaging of biomolecules. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006. 45 (3B): p. 19041908.
11. Tien, S., Zou, Q. Z., and Devasia, S., Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed afm operation. Ieee Transactions on Control Systems Technology, 2005. 13 (6): p. 921931.
12. Schitter, G., Menold, P., Knapp, H. F., Allgower, F., and Stemmer, A., High performance feedback for fast scanning atomic force microscopes. Review of Scientific Instruments, 2001. 72 (8): p. 33203327.
13. Sulchek, T., Hsieh, R., Adams, J. D., Yaralioglu, G. G., Minne, S. C., Quate, C. F., Cleveland, J. P., Atalar, A., and Adderton, D. M., High-speed tapping mode imaging with active q control for atomic force microscopy. Applied Physics Letters, 2000. 76 (11): p. 14731475.
14. Egawa, A., Chiba, N., Homma, K., Chinone, K., and Muramatsu, H., High-speed scanning by dual feedback control in snom afm. Journal of Microscopy-Oxford, 1999. 194: p. 325328.
15. Fantner, G. E., Schitter, G., Kindt, J. H., Ivanov, T., Ivanova, K., Patel, R., Holten-Andersen, N., Adams, J., Thurner, P.J., Rangelow, I. W., and Hansma, P. K., Components for high speed atomic force microscopy. Ultramicroscopy, 2006. 106 (8-9): p. 881887.
16. Kim, D., Kang, D., Shim, J., Song, I., and Gweon, D., Optimal design of a flexure hinge-based xyz atomic force microscopy scanner for minimizing abbe errors. Review of Scientific Instruments, 2005. 76 (7): p. -.
17. Kindt, J. H., Fantner, G. E., Cutroni, J. A., and Hansma, P. K., Rigid design of fast scanning probe microscopes using finite element analysis. Ultramicroscopy, 2004. 100 (3-4): p. 259265.
18. Kwon, J., Hong, J., Kim, Y. S., Lee, D. Y., Lee, K., Lee, S. M., and Park, S. I., Atomic force microscope with improved scan accuracy, scan speed, and optical vision. Review of Scientific Instruments, 2003. 74 (10): p. 43784383.
19. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., and Toda, A., A high-speed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98 (22): p. 1246812472.
20. Picco, L. M., Bozec, L., Ulcinas, A., Engledew, D. J., Antognozzi, M., Horton, M. A., and Miles, M. J., Breaking the speed limit with atomic force microscopy. Nanotechnology, 2007. 18 (4): p. -.
21. Fantner, G. E., Hegarty, P., Kindt, J. H., Schitter, G., Cidade, G. A. G., and Hansma, P. K., Data acquisition system for high speed atomic force microscopy. Review of Scientific Instruments, 2005. 76 (2): p. -.
22. Humphris, A. D. L., Hobbs, J. K., and Miles, M. J., Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second. Applied Physics Letters, 2003. 83 (1): p. 68.
23. Degertekin, F. L., Onaran, A. G., Balantekin, M., Lee, W., Hall, N. A., and Quate, C. F., Sensor for direct measurement of interaction forces in probe microscopy. Applied Physics Letters, 2005. 87 (21): p. -.
24. Yamashita, H., Kodera, N., Miyagi, A., Uchihashi, T., Yamamoto, D., and Ando, T., Tip-sample distance control using photothermal actuation of a small cantilever for high-speed atomic force microscopy. Review of Scientific Instruments, 2007. 78 (8).
25. Hansma, P. K., Schitter, G., Fantner, G. E., and Prater, C., Applied physics - high-speed atomic force microscopy. Science, 2006. 314 (5799): p. 601602.
26. Ando, T., Kodera, N., Maruyama, D., Takai, E., Saito, K., and Toda, A., A high-speed atomic force microscope for studying biological macromolecules in action. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002. 41 (7B): p. 48514856.
27. Chand, A., Viani, M. B., Schaffer, T. E., and Hansma, P. K., Microfabricated small metal cantilevers with silicon tip for atomic force microscopy. Journal of Microelectromechanical Systems, 2000. 9 (1): p. 112116.
28. Viani, M. B., Pietrasanta, L. I., Thompson, J. B., Chand, A., Gebeshuber, I. C., Kindt, J. H., Richter, M., Hansma, H. G., and Hansma, P. K., Probing protein-protein interactions in real time. Nature Structural Biology, 2000. 7 (8): p. 644647.
29. Viani, M. B., Schaffer, T. E., Chand, A., Rief, M., Gaub, H. E., and Hansma, P. K., Small cantilevers for force spectroscopy of single molecules. Journal of Applied Physics, 1999. 86 (4): p. 22582262.
30. Viani, M. B., Schaffer, T. E., Paloczi, G. T., Pietrasanta, L. I., Smith, B. L., Thompson, J. B., Richter, M., Rief, M., Gaub, H. E., Plaxco, K. W., Cleland, A. N., Hansma, H. G., and Hansma, P. K., Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Review of Scientific Instruments, 1999. 70 (11): p. 43004303.
31. Ohler, B., Cantilever spring constant calibration using laser doppler vibrometry. Review of Scientific Instruments, 2007. 78 (6): p. -.
32. Kindt, J. H., Fantner, G. E., Thompson, J. B., and Hansma, P. K., Automated wafer-scale fabrication of electron beam deposited tips for atomic force microscopes using pattern recognition. Nanotechnology, 2004. 15 (9): p. 11311134.

Keywords

Related content

Powered by UNSILO

Imaging Cellular and Viral Materials with Small Cantilevers Developed for High Speed Atomic Force Microscopy

  • Georg Fantner (a1), Tzvetan Ivanov (a2), Katerina Ivanova (a3), David Gray (a4), Ivo W Rangelow (a5), Paul K Hansma (a6) and Angela M Belcher (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.