Skip to main content Accessibility help

Identifying Iron Oxide Based Materials that Can Either Pass or Not Pass through the in vitro Blood-Brain Barrier

  • Di Shi (a1), Linlin Sun (a2), Gujie Mi (a1), Soumya Bhattacharya (a3), Suprabha Nayar (a3) and Thomas J Webster (a4)...


In this study, an in vitro blood-brain barrier model was developed using murine brain endothelioma cells (b.End3 cells). By comparing the permeability of FITC-Dextran at increasing exposure times in serum-free medium to such values in the literature, we confirm that the blood-brain barrier model was successfully established. After such confirmation, the permeability of five ferrofluid (FF) nanoparticle samples, GGB (ferrofluid synthesized using glycine, glutamic acid and BSA), GGC (glycine, glutamic acid and collagen), GGP (glycine, glutamic acid and PVA), BPC (BSA, PEG and collagen) and CPB (collagen, PVA and BSA), was determined using this model. In addition, all the five FF samples were characterized by zeta potential to determine their charge as well as TEM and dynamic light scattering for determining their hydrodynamic diameter. Results showed that FF coated with collagen had better permeability to the blood-brain barrier than FF coated with glycine and glutamic acid based on an increase of 4.5% in permeability. Through such experiments, magnetic nanomaterials, such as ferrofluids, that are less permeable to the blood brain barrier can be used to decrease neural tissue toxicity and magnetic nanomaterials with more permeable to the blood-brain barrier can be used for brain drug delivery.



Hide All
1. Hawkins, B.T., Davis, T.P., 2005. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 57, 173185.
2. Hamilton, RD, Foss, AJ, Leach, L (2007). "Establishment of a human in vitro model of the outer blood–retinal barrier". Journal of Anatomy 211(6): 707–16.
3. Neuwelt, E.A., et al. . Engaging neuroscience to advance translational research in brain barrier biology, Nat. Rev. Neurosci. 12 (2011) 169182.
4. Pardridge, W. M. (1995). "Transport of small molecules through the blood-brain barrier: biology and methodology." Advanced Drug Delivery Reviews 15(1-3): 536.
5. Seong, DK, et al. . Magnetic targeting of nanoparticles across the intact blood–brain barrier, Journal of Controlled Release, Volume 164, Issue 1, 28 November 2012, Pages 49-57, ISSN 0168–3659
6. Christian, P, Olivier, Z, Olga, M. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection—Progress and prospects, Advanced Drug Delivery Reviews. 2011; Volume 63, Issues 1415:1300-1331
7. Iannetti, G.D., Wise, Richard G., BOLD functional MRI in disease and pharmacological studies: room for improvement?, Magnetic Resonance Imaging, 2007. Volume 25, Issue 6: 978988
8. Logothetis, NK, Pauls, J, Augath, M, Trinath, T, Oeltermann, A.Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412:150157
9. Nayar, S, Sinha, A, Pramanick, AK. A biomimetic process for the synthesis of aqueous ferrofluids for biomedical applications. Application number 0672DEL2010. March 22, 2010
10. Dan, H, Lubna, S, Thomas, JW. Comparison of ferrofluid and powder iron oxide nanoparticle permeability across the blood-brain barrier. Int J. of Nanomedicine. 2012; 2012:7–1.
11. Bhattacharya, S., et al. . Protein-Polymer Functionalized Aqueous Ferrofluids Showing High T 2 Relaxivity. J. Biomed. Nanotechnol. 2013; Vol. 9: 19
12. Bennett, J, et al. . Blood–brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol. 2010; 229:180191.
13. Brown, RC, Morris, AP, O’Neil, RG. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res. 2007; 1130:1730.


Related content

Powered by UNSILO

Identifying Iron Oxide Based Materials that Can Either Pass or Not Pass through the in vitro Blood-Brain Barrier

  • Di Shi (a1), Linlin Sun (a2), Gujie Mi (a1), Soumya Bhattacharya (a3), Suprabha Nayar (a3) and Thomas J Webster (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.