Skip to main content Accessibility help
×
Home

Hysteresis Loops and Coercivity Mechanisms in Sintered and Nanocrystalline Permanent Magnets

  • H. Kronmüller (a1), D. Goll (a1), I. Kleinschroth (a1) and A. Zern (a1)

Abstract

The hysteresis loops of nanocrystalline (nc) permanent magnets (pms) produced by the melt-spin technique have been investigated for compositions based on the intermetallic compounds R2Fe14B (R = Nd, Pr) and the carbides Sm2Fe17−xGaxCy. The following three types of pms have been studied: 1) High-coercivity pins with exchange decoupled grains. 2) High-remanence exchange-spring pms. 3) High-coercive-high-remanence composite pins with exchange coupled soft and hard magnetic grains. The temperature dependence of the coercive field μ0Hc for all three types ofpms obeys a relation for a modified nucleation field, Hc = (2K1/Js)α - Neff Ms (K1 = first anisotropy constant, Ms = spontaneous magnetization). For an analysis of the characteristic differences between the microstructural parameters a and Neff as obtained for the three types of pms, computational micromagnetism on the basis of the Finite Element Technique is applied. This powerful method allows a quantitative analysis of the role of grain size, grain boundaries (gbs), texture of easy directions and of soft magnetic phases in composite materials. In order to obtain satisfactory results, a self-adapting algorithm has been developed where the mesh size is adapted to the gradients of the direction cosines of the spontaneous magnetization. It turns out that excellent magnetic properties of composite pms can only be obtained if the gbs are as ideal as possible. Remanence and coercive field are found to decrease linearly with a corresponding reduction of both, the crystal anisotropy and the exchange constant within the gbs. In composite pins the diameters of the soft magnetic grains should be smaller than twice the domain wall width, of the hard magnetic phase in order to obtain a remarkable remanence enhancement. From these model calculations general rules for the development of optimized nc pms with large remanences and large coercivities are derived.

Copyright

References

Hide All
1. Brown, W.F. Jr., Rev. Mod. Phys. 17, p. 15 (1945).
2. Stoner, E.C. and Wohlfarth, E.P., Philos. Trans. Roy. Soc. 240, p. 599 (1948).
3. Kronmufller, H., Durst, K.-D. and Sagawa, M., J. Magn. Magn. Mater. 74, p. 291 (1988).
4. Kronmuiler, H. in Supermagnets, Hard Magnetic Materials, edited by Long, G.J. and Grand-jean, F. (Kluwer, Dordrecht 1991), p. 461.
5. Sagawa, M. and Hirosawa, S., J. Physique 49, p. C8617 (1988).
6. Tokunaga, M., Nozawa, Y., Iwasaki, K., Tamigawa, S. and Harada, H., IEEE Trans. Magn. 25, p. 3561 (1989).
7. Fidler, J., 7th Int. Symp. on Magnetic Anisotropy and Coercivity in RE-TMAlloys, edited by Street, B. (The University of Western Australia, Perth 1992), p. 11.
8. Kronmiller, H., Fischer, R., Seeger, M. and Zern, A., J. Phys. D: Appl. Phys. 29, p. 2274 (1996).
9. Kneller, E.F. and Hawig, R., IEEE Trans. Magn. 27, p. 3588 (1991).
10. Schrefl, T., Fidler, J. and Kronmuller, H., Phys. Rev. B 49, p. 6100 (1994).
11. Ding, J., McCormick, P.G. and Street, R., J. Magn. Magn. Mater. 124, p. Li (1993).
12. Ding, J., Liu, Y., Street, R. and McCormick, P.G., J. Appl. Phys. 75, p. 1032 (1994).
13. Henig, E.-Th. and Grieb, B. in Supermagnets, Hard Magnetic Materials, edited by Long, G.J. and Grandjean, F. (Kluwer, Dordrecht 1991), p. 171.
14. Coehoorn, R., Mooij, D.B. de, Duchateau, J.P.W.B. and Buschow, K.H.J., J. Physique 49, p. C8669 (1988).
15. Bauer, J., Seeger, M., Zern, A. and Kronmèiller, H., J. Appl. Phys. 80, p. 1667 (1996).
16. Goll, D., Seeger, M. and Kronmtiller, H., J. Magn. Magn. Mater. 185, p. 49 (1998).
17. Harland, C.I., Davies, H.A., Watts, B.E. and Leccabue, F. in Rare Earth Magnets and Their Applications, edited by Schultz, L. and Müller, K.-H. (Werkstoff-Informationsgesellschaft, Frankfurt 1998), p. 263.
18. Kronmtiller, H., phys. stat. sol. (b) 144, p. 385 (1987).
19. Givord, D., Tenaud, P. and Viadieu, T., IEEE Trans. Magn. MAG- 24, p. 1921 (1988).
20. Martinek, G. and Kronmuller, H., J. Magn. Magn. Mater. 86, p. 177 (1990).
21. Lier, J. van, Seeger, M. and Kronmuiller, H., J. Magn. Magn. Mater. 167, p. 43 (1997).
22. Kleinschroth, J., Doctor Thesis, University Stuttgart 1997.
23. Fischer, R., Schrefl, T., Kronmèiller, H. and Fidler, J., J. Magn. Magn. Mater. 153, p. 35 (1996).
24. Schrefl, T., H. Kronmuller and Fidler, J., J. Magn. Magn. Mater. 127, p. L273 (1993).
25. Schrefl, T., Fidler, J. and Kronmuiller, H., J. Magn. Magn. Mater. 138, p. 15 (1994).
26. Willcox, M., Williams, J., Leonowicz, M. and Manaf, A. in 8th Int. Symp. on Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, edited by Manwaring, C., Jones, D., Williams, A. and Harris, I. (University of Birmingham, UK 1994), p. 443.
27. Fischer, R. and Kronméiller, H., Phys. Rev. B 54, p. 7284 (1996).
28. Fischer, R. and Kronmuller, H., J. Magn. Magn. Mater. 184, p. 166 (1998).

Hysteresis Loops and Coercivity Mechanisms in Sintered and Nanocrystalline Permanent Magnets

  • H. Kronmüller (a1), D. Goll (a1), I. Kleinschroth (a1) and A. Zern (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed