Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T09:50:08.673Z Has data issue: false hasContentIssue false

Hypervalent Siliconate Materials. Synthesis and Characterization of Novel Ladder and Network Ionomers

Published online by Cambridge University Press:  25 February 2011

Kenneth J. Shea
Affiliation:
Department of Chemistry, University of California, Irvine, California 92717
Douglas A. Loy
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
James H. Small
Affiliation:
Department of Chemistry, University of California, Irvine, California 92717
Get access

Abstract

The first representatives of novel materials that contain five- and six-coordinate anionie silicon are reported. Linear (or cyclic) ionomers incorporating pentacovalent siliconate were synthesized by condensation of 1,2,4,5-tetrahydroxybenzene (THB) with alkyl and aryl trialkoxysilylanes. Network ionomers that incorporate pentacovalent siliconates were formed from THB and alkyl and aryl bistrialkoxysilanes. In addition, network ionomers with hexacoordinate silicon result from condensation of TEOS and THB. Spectroscopie evidence is presented to verify the identity of the novel structural features of these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Holmes, R. R. Chem. Rev. 1990, 90, 17.Google Scholar
2. Corriu, R. J. P.; Guerin, C. Adv. Organomet. Chem. 1982, 20, 265.Google Scholar
3. (a) Corriu, R. J. P.; Guerin, C.; Moreau, J. J. E. The Chemistry of Organic Silicon Compounds; Patai, S.; Rappoport, Z., Eds., Wiley, New York, 1989, Part 1, pp. 305370.Google Scholar
(b) Corriu, R. J. P.; Young, , The Chemistry of Organic Silicon Compounds; Patai, S.; Rappoport, Z., Eds., Wiley, New York, 1989, Part 2, pp. 12411288.Google Scholar
4. Fleming, I. in Comprehensive Organic Chemistry, Barton, D. H. R.; Ollis, D. W., Eds., Pergamon Press, Oxford, 1979, Vol. 3, p. 555.Google Scholar
5. (a) Corriu, R. J. P.; Guerin, C.; Moreau, J. J. E. Topics in Stereochemistry 1984, 15, 43.Google Scholar
(b) Johnson, S. E.; Day, R. O.; Holmes, R. R., Inorg. Chem. 1989, 28, 3182.Google Scholar
(c) Johnson, S. E.; Payne, J. S.; Day, R. O.; Holmes, J. M.; Holmes, R. R. Inorg. Chem, 1989, 28, 3190.Google Scholar
(d) Damraver, R.; O'Connell, B.; Denahey, S. E.; Simon, R. Organometallics 1989, 8, 1167.Google Scholar
6. Shklover, V. E.; Struchkov, Yu. T.; Voronkov, M. G. Russian Chemical Reviews 1989, 58, 211.Google Scholar
7. Johnson, S. E.; Deiters, J. A.; Day, R. O.; Holmes, R. R. J. Am. Chem. Soc. 1989, 211, 320.Google Scholar
8. Sakurai, H. Selectivities in Lewis Acid Promoted Reactions; Schinzer, D., Ed., Kluwer, 1989, p. 203.CrossRefGoogle Scholar
9. Tandura, S. N.; Voronkov, M. G.; Alekseev, N. V. Top Stereochem, 1986, 131, 99.Google Scholar
10. (a) Thomas, J. M.; Gonzales-Calbert, J. M.; Fyfe, C. A.; Gobbi, G. C.; Nicol, M. Geophysical Research Letters 1983, 10, 91.Google Scholar
(b) Edge, R. A.; Taylor, H. F. W. Nature 1969, 224, 363.Google Scholar
11. Edge, R. A.; Talor, H. F. W. Nature 1969, 224, 363.Google Scholar
12. Shea, K. J.; Loy, D.; Webster, O. Chemistry of Materials 1989, 1, 572.CrossRefGoogle Scholar
13. Shea, K. J.; Webster, O. W.; Loy, D. A. Better Ceramics Through Chemistry IV, MRS Symposium Proceedings, 1990, 180, 975.Google Scholar
14. Shea, K. J.; Loy, D. A.; Webster, O. J. Am. Chem. Soc. 1992, 114, 0000.Google Scholar
15. Rosenheim, A.; Baibmann, B.; Schendel, G. Z. Anorg. All. Chem. 1931, 196, 160.Google Scholar
16. Frye, C. L. J. Am. Chem. Soc. 1964, 86, 3170.Google Scholar
17. Cella, J. A.; Cargiol, J. D.; Williams, E. A. J. Organomet, Chem. 1980, 186, 13.Google Scholar