Skip to main content Accessibility help
×
Home

Hyperplastic Forming: Process Potential and Factors Affecting Formability

  • Glenn S. Daehn (a1), Vincent J. Vohnout (a1) and Subrangshu Datta (a1)

Abstract

This paper has two distinct goals. First, we argue in an extended introduction that high velocity forming, as can be implemented through electromagnetic forming, is a technology that should be developed. As a process used in conjunction with traditional stamping, it may offer dramatically improved formability, reduced wrinkling and active control of springback among other advantages. In the body of the paper we describe the important factors that lead to improved formability at high velocity. In particular, high sample velocity can inhibit neck growth. There is a sample size dependence where larger samples have better ductility than those of smaller dimensions. These aspects are at least partially described by the recent model of Freund and Shenoy. In addition to this, boundary conditions imposed by sample launch and die impact can have important effects on formability.

Copyright

References

Hide All
1. http://www.osu.edu/hyperplasticity.
2. Moon, F.C., Magneto-Solid Mechanics, John Wiley and Sons Inc., 1984.
4. High Velocity Forming of Metals, Revised Edition, Bruno, E.L., ed., ASTME, 1968
3. Davies, R. and Austin, E. R., Developments in High Speed Metal Forming, Industrial Press, New York, 1970.
4. Considere, A., Ann Ponts Chaussees, 9, 574–75 (1885).
5. Swift, H. W., J. Mech. Phys. of Sol., 1, pp. 1–18 (1952).10.1016/0022-5096(52)90002-1
6. Marciniak, Z. and Kuczynski, K., hIt. J. Mech. Sci., 9, 609 (1967).10.1016/0020-7403(67)90066-5
7. Keeler, S. P. and Backofen, W. A., Trans ASM, 56, 25 (1963).
8. Goodwin, G. M., SAE Automotive Congress, Paper 680093 (1968).
9. Hecker, S. S., Metals Eng. Quart, 14, 30 (1974).
10. Hart, E. W., Acta Met, 15, 351 (1967)10.1016/0001-6160(67)90211-8
11. Ghosh, A. K. and Ayres, R. A., Met Trans, 7A, 1589 (1976).10.1007/BF02656404
12. Pearson, C. E., J. Inst. Metals. 54, 111 (1934).
13. Avrey, D. H. and Backofen, W. A., Trans Q. ASM, 58, 551–62 (1965).
14. Morrison, W. B., Trans Met Soc AIME, 242, pp. 22212227 (1968)
15. Hu, X. and Daehn, G.S., Acta Mater., 44, pp 1021–33, 1996.10.1016/1359-6454(95)00228-6
16. Altynova, M., Hu, X. and Daehn, G. S., Met and Mat Trans, 27A, 1837–43 (1996)10.1007/BF02651933
17. vonKarman, T. and Duwez, P., J. Appl. Phys., 21, 987 (1950).10.1063/1.1699544
18. Shenoy, V. B. and Freund, L. B., J Mech. Phys. Solids, 47, 22092233.10.1016/S0022-5096(99)00031-9
19. Hill, R., In: Problems in Continuum Mechanics, SIAM, Philadelphia, 155164 (1961)
20. Tamhane, A., Altynova, M. and Daehn, G. S., Scrpta Mater, 34, 1345–50 (1996)10.1016/1359-6462(95)00672-9
21. Datta, S., work in progress, Department of Materials Science and Engineering, The Ohio State University.
22. Pandolfi, A., Krystl, P. and Ortiz, M., Int. J. of Fracture, 95, 279–97 (1999)10.1023/A:1018672922734
23. Balanethiram, V. S. and Daehn, G. S., Scripta Met et Mat, 30, 515–20 (1994)10.1016/0956-716X(94)90613-0
24. Balanethiram, V. S. and Daehn, G. S., Scripta Met et Mat, 27, 1783–88 (1992)10.1016/0956-716X(92)90019-B

Related content

Powered by UNSILO

Hyperplastic Forming: Process Potential and Factors Affecting Formability

  • Glenn S. Daehn (a1), Vincent J. Vohnout (a1) and Subrangshu Datta (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.