Skip to main content Accessibility help

Hydrothermally Grown Single-Crystalline Zinc Oxide; Characterization and Modification


An overview of our recent results on characterization and modification of high-resistivity n-type bulk zinc oxide samples, grown by hydrothermal techniques, is given. Three specific topics are addressed; (i) the role of lithium (Li) as an electrically compensating impurity, (ii) extrinsic n-type doping by hydrogen implantation, and (iii) influence of annealing conditions on deep band emission. In (i), furnace annealing of as-grown samples at temperatures above ∼800 °C is shown to cause out-diffusion of residual Li impurities and concurrently, the resistivity decreases. After annealing at 1400 °C, a resistivity close to 10−1 Ωcm is obtained and the Li content is reduced from above 1017 cm−3 to the mid 1015 cm−3 range, providing evidence for the crucial role of Li as an electrically compensating impurity. For ion-implanted samples, vacancy clusters evolve during post-implant flash lamp annealing (20 ms duration) and these clusters appear to trap and deactivate Li with a resulting improvement of the n-type conductivity. However, these clusters have a limited stability and start to dissociate already after 1h at 900 °C, accompanied by a decrease in the conductivity. For topic (ii), n-type doping by hydrogen implantation is shown to enhance the conductivity by about 5 orders of magnitude already in the as-implanted state. Despite substantial loss of hydrogen, the conductivity remains stable, or even increases, after annealing up to ≥600 °C, and necessary conditions for doping by hydrogen are discussed. In (iii), the origin of the commonly observed deep band emission from monocrystalline zinc oxide is investigated using a concept of annealing as-grown samples in different atmospheres. A strong influence by the atmosphere and temperature is observed and the results can be interpreted in terms of dominant effects on the emission by vacancy-related defects.



Hide All
1. Fuller, M.L., Science 70, 196 (1929).
2. Bunn, C.W., Proc. Phys. Soc. 47, 835 (1935).10.1088/0959-5309/47/5/307
3. Brækken, H. and Jore, O., Trans. R. Norw. Soc. Sci. Lett. 8, 1 (1935).
4. BÕrseth, T. Moe, PhD thesis Annealing of ion-implanted and as-grown ZnO, University of Oslo (ISSN 1501-7710, No 612, 2007), p. 3.
5.See e.g., Osinsky, A. and Karpov, S. in Zinc Oxide Bulk, Thin Films and Nanostructures, edited by Jagadish, C. and Pearton, S.J. (Elsevier, Oxford, UK, 2006), p.525.
6. Wei, Z.P., Lu, Y.M., Shen, D.Z., Zhang, Z.Z., Yao, B., Li, B.H., Zhang, J.Y., Zhao, D.X., Fan, X.W., Tang, Z.K., Appl. Phys. Lett. 90, 042113 (2007).
7.See e.g., Look, D.C., Claffin, B., Alivov, Ya.I. and Park, S.J., Phys. Stat. Sol. (a) 10, 2203 (2004), and references therein.10.1002/pssa.200404803
8. Litton, C.W., Alivov, Ya.I., Johnstone, D., Özgür, Ü., Avrutin, V., Fan, Q., Akarca-Biyikli, S.S., Zhu, K. and Morkoç, H., Mat. Sci. Forum 527–529, 1571 (2006).10.4028/
9. Maeda, K., Sato, M., Niikura, I. and Fukuda, T., Semicond. Sci. Technol. 20, S49 (2005).10.1088/0268-1242/20/4/006
10. Skorupa, W., Yankov, R.A., Anwand, W., Voelskow, M., Gebel, T., Downey, D.F. and Arevalo, E.A., Mater. Sci. Eng. B 114–115, 358 (2004).
11. BÕrseth, T. Moe, Tuomisto, F., Christensen, J.S., Skorupa, W., Monakhov, E.V., Svensson, B.G. and Kuznetsov, A.Yu., Phys. Rev. B 74, 161202(R) (2006).10.1103/PhysRevB.74.161202
12. Tuomisto, F., Ranki, V., Saarinen, K. and Look, D.C., Phys. Rev. Lett. 91, 205502 (2003).
13. Thomas, D.G. and Lander, J.J., J. Chem. Phys. 25, 1136 (1956).
14. Hutson, A.R., Phys. Rev. 108, 222 (1957).10.1103/PhysRev.108.222
15. Ip, K., Overberg, M.E., Heo, Y.W., Norton, D.P., Pearton, S.J., Kucheyev, S.O., Jagadish, C., Williams, J.S., Wilson, R.G. and Zavada, J.M., Appl. Phys. Lett. 81, 3996 (2002).
16. Monakhov, E.V., Christensen, J.S., Maknys, K., Svensson, B.G. and Kuznetsov, A.Yu., Appl. Phys. Lett. 87, 191910 (2005).10.1063/1.2128059
17. Janson, M., Linnarsson, M.K., Hallén, A. and Svensson, B.G., Mater. Res. Soc. Symp. Proc. 513, 439 (1998).10.1557/PROC-513-439
18. Cordaro, J.F., Shim, Y. and May, J.E., J. Appl. Phys. 60, 4186 (1986).
19. Sun, Y. and Wang, H., Physica B 325, 157 (2003).
20. Kucheyev, S.O., Deenapanray, P.N.K., Jagadish, C., Williams, J.S., Yano, M., Koike, K., Sasa, S., Inoue, M. and Ogata, K., Appl. Phys. Lett. 81, 3350 (2002).
21. BÕrseth, T. Moe, Christensen, J.S., Maknys, K., Hallén, A., Svensson, B.G. and Kuznetsov, A.Yu., Superlatt. Microstruct. 38, 464 (2005).10.1016/j.spmi.2005.08.017
22.See e.g., Reynolds, D.C., Look, D.C. and Jogai, B., J. Appl. Phys. 89, 6189 (2001), and references therein.
23. Özgúr, Ü., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J. and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).10.1063/1.1992666
24. BÕrseth, T. Moe, Svensson, B.G., Kuznetsov, A.Yu., Klason, P., Zhao, Q.X. and Willander, M., Appl. Phys. Lett. 89, 262112 (2006).10.1063/1.2424641
25. Wang, L. and Giles, N.C., J. Appl. Phys. 94, 973 (2003).10.1063/1.1586977
26. Varshni, Y.P., Phys. Stat. Sol. 19, 459 (1967); Y.P. Varshni, ibid., 20, 9 (1967).
27. Klason, P., BÕrseth, T. Moe, Zhao, Q.X., Svensson, B.G., Kuznetsov, A.Yu., Bergman, J.P. and Willander, M., Sol. Stat. Comm., accepted (2007).
28. Look, D.C., Hemsky, J.W. and Sizelove, J.R., Phys. Rev. Lett. 82, 2552 (1999).
29. Erhart, P., Albe, K. and Klein, A., Phys. Rev. B 73, 205203 (2006).
30. Kohan, A.F., Ceder, G., Morgan, D. and Walle, C.G. Van de, Phys. Rev. B 61, 15019 (2000).


Hydrothermally Grown Single-Crystalline Zinc Oxide; Characterization and Modification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed