Skip to main content Accessibility help

Hydrogen-plasma etching of thin amorphous silicon layers for heterojunction interdigitated back-contact solar cells

  • Stefano. N. Granata (a1) (a2), Twan Bearda (a1), Ivan Gordon (a1), Jef Poortmans (a1) (a2) and Robert Mertens (a1) (a2)...


In this study, A H2-plasma is studied as a dry method to etch thin layers of amorphous silicon aSi:H(i) deposited on a crystalline wafer. It is found that H2-plasma etches aSi:H(i) selectively toward silicon nitrides hard masks with an etch rate below 3nm/min. Depending on power density and temperature of the substrate during the H2-plasma, the energy bandgap, the hydrides distribution and the void concentration of the aSi:H(i) layers are modified and the amorphous-to-crystalline transition is approached. At high temperature (>250C) and low plasma power (<20mW/cm2), the dihydride (SiH2) content increases and the bandgap widens. The etch rates stays below 0.5 nm/min. At low temperature (<150°C) and high power (>70mW/cm2), the void concentration increases significantly and etch rates up to 3nm/min are recorded.

These findings are supported by a theoretical model that indicates formation of Si-H-Si precursors in the layer during exposure to H2-plasma. According to the experimental conditions, these precursors either diffuses and forms Si-Si strong bonds or are removed from the film, causing layer etching.



Hide All
1. Wolf Stefaan, De, Antoine, Descoeudres, Holman Zachary, C., and Christophe, Ballif, Green 2, 7 (2012)
2. Lu, M., Das, U., Bowden, S., Hegedus, S., and Birkmire, R., Progress in Photovoltaics: Research and Applications 19, 326338 (2011).
3. Mingirulli, N., Haschke, J., Gogolin, R., Ferré, R., Schulze, T.F., Düsterhöft, J., Harder, N.-P., Korte, L., Brendel, R., and Rech, B., Physica Status Solidi (RRL) – Rapid Research Letters 5, 159161 (2011).
4. Verlinden, P.J., Aleman, M., Posthuma, N., Fernandez, J., Pawlak, B., Robbelein, J., Debucquoy, M., Van Wichelen, K., and Poortmans, J., Solar Energy Materials and Solar Cells 106, 37 (2012).
5. Aleman, M., Das, J., Janssens, T., Pawlak, B., Posthuma, N., Robbelein, J., Singh, S., Baert, K., Poortmans, J., Fernandez, J., Yoshikawa, K., and Verlinden, P.J., Energy Procedia 27, 638 (2012).
6. Kovacs, G.T.A., Maluf, N.I., and Petersen, K.E., Proceedings of the IEEE 86, 1536 (1998).
7. Tucci, M., Salurso, E., Roca, F., and Palma, F., Thin Solid Films 403-404, 307 (2002).
8. Aspnes, D.E., Theeten, J.B., and Hottier, F., Phys. Rev. B 20, 3292 (1979).
9. Mahan, A.H., Menna, P., and Tsu, R., Applied Physics Letters 51, 1167 (1987).
10. Boland, J.J. and Parsons, G.N., Science 256, 1304 (1992)
11. Chiang, C.-M., Gates, S.M., Lee, S.S., Kong, M., and Bent, S.F., J. Phys. Chem. B 101, 9537 (1997).
12. Schulze, T.F., Korte, L., Ruske, F., and Rech, B., Phys. Rev. B 83, 165314 (2011).
13. Descoeudres, A., Barraud, L., De Wolf, S., Strahm, B., Lachenal, D., Guérin, C., Holman, Z.C., Zicarelli, F., Demaurex, B., Seif, J., Holovsky, J., and Ballif, C., Applied Physics Letters 99, 123506 (2011).
14. Chapman, B.N., Glow Discharge Processes: Sputtering and Plasma Etching (Wiley, 1980).
15. Van de Walle, C.G. and Street, R.A., Phys. Rev. B 51, 1061510618 (1995).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed