Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T13:47:45.360Z Has data issue: false hasContentIssue false

Hydrogenated Microcrystalline Silicon Solar Cells Made with Modified Very-High-Frequency Glow Discharge

Published online by Cambridge University Press:  01 February 2011

Baojie Yan
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084, U.S.A.
Kenneth Lord
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084, U.S.A.
Jeffrey Yang
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084, U.S.A.
Subhendu Guha
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084, U.S.A.
Jozef Smeets
Affiliation:
N. V. Bekaert S. A., Bekaertstraat, 2, B-8550 Zwevegem, Belgium
Jean-Marie Jacquet
Affiliation:
N. V. Bekaert S. A., Bekaertstraat, 2, B-8550 Zwevegem, Belgium
Get access

Abstract

Hydrogenated microcrystalline silicon (μc-Si:H) solar cells are made using modified veryhigh-frequency (MVHF) glow discharge at deposition rates ∼3-5 Å/s. We find that the solar cells made under certain conditions show degradation in air without intentional light soaking. The short-circuit current drops significantly within a few days after deposition, and then stabilizes. We believe that post-deposition oxygen diffusion along the grain boundaries or cracks is the origin of the ambient degradation. By optimizing the deposition conditions, we have found a plasma regime in which the μc-Si:H solar cells do not show such ambient degradation. The best a-Si:H/μc-Si:H double-junction solar cell has an initial active-area efficiency of 10.9% and is stable against the ambient degradation. The stability data of the solar cells after light soaking are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, J., Banerjee, A., and Guha, S., Appl. Phys. Lett. 70, 2975(1997).Google Scholar
2. Banerjee, A., Yang, J., and Guha, S., Mat. Res. Soc. Symp. Proc. 557, 743(1999).Google Scholar
3. Meier, J., R. Flückiger, Keppner, H., and Shah, A., Appl. Phys. Lett. 65, 860(1994).Google Scholar
4. Meier, J., Torres, P., Platz, R., Dubail, S., Kroll, U., Anna Selvan, J. A., Pellaton Vaucher, N., Hof, Ch., Fischer, D., Keppner, H., Shah, A., Ufert, K.D., Giannoulès, P., and Koehler, J., Mat. Res. Symp. Proc. 420, 3(1996).Google Scholar
5. Ogawa, K., Saito, K., Sano, M., Sakai, A., and Matsuda, K., Technical Digest of the International PVSEC-12, Jeju, Korea, (2001), p.343. Google Scholar
6. Nasuno, Y., Kondo, M., and Matsuda, A., Mat. Res. Symp. Proc. 664, A15.5 (2001).Google Scholar
7. Vetterl, O., Carius, R., Houben, L., Scholten, C., Luysberg, M., Lambertz, A., Finger, F., and Wagner, H., Mat. Res. Symp. Proc. 609, A15.2 (2000).Google Scholar
8. Klein, S., Finger, F., Carius, R., Kluth, O., Neto, L. B., Wagner, H., Stutzmann, M., Proc. 17th European Photovoltaic Solar Energy Conference and Exhibition, Germany, (2001), in press.Google Scholar
9. Jones, S.J., Crucet, R., Deng, X., Williamson, D. L., and Izu, M., Mat. Res. Symp. Proc. 609, A4.5 (2000).Google Scholar
10. Yamamoto, K., Yoshimi, M., Tawada, Y., Fukuda, S., Sawada, T., Meguro, T., Takata, H., Suezaki, T., Koi, Y., Hayashi, K., Suzuki, T., and Nakajima, A., Technical Digest of the International PVSEC-12, Jeju, Korea, (2001), p.547.Google Scholar
11. Turner, W.A. and Lucovsky, G., Mat. Res. Symp. Proc. 297, 521(1993).Google Scholar
12. Schubert, M.B., Brüggemann, R., Bilger, G., and Hierzenberger, A., Proc. of 2nd World Conf. and Exhibition on Photoltaic Solar Energy Conversion, Vienna, Austria (1998), p. 834.Google Scholar
13. Goerlitzer, M., Torres, P., Beck, N., Wyrsch, N., Keppner, H., Pohl, J., and Shah, A., J. Non-Crystalline Solids, 227-230, 996(1998).Google Scholar