Skip to main content Accessibility help

Hydrogen Production via Methane Decomposition Using Ni and Ni-Cu Catalysts Supported on MgO, Al2O3 and MgAl2O4

  • José F. Pola (a1), Miguel A. Valenzuela (a2), Iván A. Córdova (a2) and J. A. Wang (a2)


Ni (10%) and Ni-Cu (50 and 25%, respectively) catalysts supported on alumina, magnesia and magnesium aluminate were synthesized. The characterization was carried out by X-ray diffraction, nitrogen physisorption, temperature programmed-reduction, Raman spectroscopy and SEM. The catalysts were tested in the methane decomposition reaction using a tubular fixed bed reactor operated in the range of 500-580°C under atmospheric pressure. A higher activity was observed with the bimetallic catalysts supported on alumina and magnesium aluminate. These results were explained in terms of Ni-Cu alloy formation and weak metal-support interaction. In the case of monometallic catalysts, a strong metal-support interaction was detected, which revealed the lowest activity and stability compared with the bimetallic catalysts. The formed carbon was a combination of amorphous and graphite.



Hide All
1. Zūttel, A., Remhof, A., Borgschulte, A. and Friedrichs, O., Phil. Trans. R. Soc. A 368, 3329 (2010).
2. Edwards, P. P., Kuznetsov, V. L. and David, W. I. F., Phil. Trans. R. Soc. A 365, 1043 (2007).
3. Gosselink, J.W., Int. J. Hydrogen Energy 27, 1125 (2002).
4. Sartbaeva, A., Kuznetsov, V. L., Wells, S. A. and Edwards, P. P., Energy Environ. Sci. 1, 79 (2010).
5. Odgen, J.M., Annu. Rev. Energy Environ. 24, 227 (1999).
6. Navarro, R.M., Peña, M.A. and Fierro, J.L.G., Chem. Rev. 107, 3952 (2007).
7. Holladay, J.D., Hu, J., King, D.L. and Wang, Y., Cat. Today 139, 244 (2009).
8. Rostrup-Nielsen, J.R., Sehested, J. and Norskov, J.K., Adv. Catal. 47, 65 (2002).
9. Abbas, H.F. and Daud, W.M.A. Wan, Int.J.Hydrogen Energy 35, 1160 (2010).
10. Li, K., Wang, H., Wei, Y. and Yan, D., Appl.Catal B:Environ. 97, 361 (2010).
11. Chen, Z. and Elnashai, S.S. E. H., AICHE J., 51, 1467 (2005).
12. Steinfeld, A., Solar Energy, 78, 603 (2005).
13. Ekambaram, S., J. Alloys Comp 448, 238 (2010).
14. Kelly, N. A., Gibson, T.L., Int. J. Hydrogen Energy 31, 1658 (2006).
15. Tanksale, A., Beltramini, J. N. and Lu, G.Q. Max, Renew. Sustain. Energy, Rev. 14, 166 (2010).
16. McKinlay, J.B. and Harwood, C.S., Curr. Op. Biotech. 21, 244 (2010).
17. Poirie, M.G. and Zapundzhiev, C., Int J Hydrogen Energy 22, 429 (1997).
18. Steinberg, M., Int J. Hydrogen Energy 23, 419 (1998).
19. Zhang, T. and Amiridis, M.D., Appl. Catal. A: General 167, 161 (1998).
20. Takenaka, S., Ogihara, H., Yamanaka, I. and Otsuka, K., Appl. Catal. A: General, 217, 101 (2001).
21. Choudhary, T.V., Aksoylu, E. and Goodman, W., Catal. Rev. 45, 151 (2003).
22. Valenzuela, M.A., Gonzalez, O., Cordova, I., Flores, S. and Wang, J.A., Chem. Eng. Trans. 4, 61 (2004).
23. Otsuka, K. and Takenaka, S., Catal. Surveys Asia, 8, 77 (2004).
24. Couttenye, R.A., Vila, M.H. De and Suib, S.L., J. Catal. 233, 317 (2005).
25. Gonzalez, O., Valenzuela, M.A. and Wang, J.A., Mater. Res. Soc. Symp. Proc. 885E, 49.1 (2006).
26. Salmones, J., Wang, J.A., Valenzuela, M.A., Sanchez, E. and Garcia, A., Catal. Today 148, 134 (2009).
27. Guevara, J. C., Wang, J. A., Chen, L. F., Valenzuela, M. A., Salas, P., García-Ruiz, A., Toledo, J. A., Cortes-Jácome, M.A., Angeles-Chavez, C. and Novaro, O., Int. J. Hydrogen Energy 35, 3509 (2010).
28. Hernandez-Pichardo, M.L., Valenzuela, M.A., Paredes, S.P., Angel, P. del and Fuente, J.A. Montoya de la, J. New Mater. Electrochem. Syst. 13, 271 (2010).
29. Zapata, B., Valenzuela, M.A., Palacios, J., Torres-Garcia, E., Int. J. Hydrogen Energy, 35 12091 (2010).
30. Ahmed, S., Aitani, A., Rahman, F., Al-Dawood, A., Al-Muhaish, F., Appl.Catal.A:General, 359, 1 (2009).
31. Chen, J., Li, Y., Ma, Y., Qin, Y., Chang, L., Carbon, 39, 1467 (2001).
32. Chen, J., Li, Y., Li, Z., Zhang, X., Appl. Catal. A: General 269, 179 (2004).
33. Quian, W., Liu, T., Wei, F., Wang, Z., Luo, G., Li, Y., Appl. Catal. A: General, 260, 223 (2004).
34. Li, D., Chen, J., Li, Y., Int. J. Hydrogen Energy 34, 299 (2009).
35. Wang, H., Baker, R.T.K., J. Phys. Chem B, 108, 20273 (2004).
36. Li, J., Lu, G., Wang, K. Li, J. Mol. Catal. A: Chem. 221, 105 (2004).
37. Dussault, L., Dopin, J.C., Guimon, C., Monthioux, M., Latorre, N., Ubieto, T., Romeo, E., Royo, C., Monzon, A., J. Catal., 251, 223 (2007).
38. Cunha, A.F., Orfao, J.J.M., Figueiredo, J.L., Int. J. Hydrogen Energy 34, 4763 (2009).
39. Gonzalez, I., Jesus, J.C.De, Navarro, C. Urbina de, Garcia, M., Catal. Today 149, 352 (2010).
40. Fierro, G., Jacono, M. Lo, Inversi, M., Porta, P., Cioci, F., Lavecchia, R., Appl. Catal. A:General, 137, 327 (1996).
41. Garcia, L., Benedicto, A., Romeo, E., Salvador, M.L., Arauzo, J., Bilbao, R., Energy Fuels 16, 1222 (2002).
42. Chen, I., Chen, F.L., Ind. Eng. Chem. Res., 29, 534 (1990).
43. Pinilla, J.L., Suelves, I., Lazaro, M.J., Moliner, R., Palacios, J.M., Appl. Catal. A: General 363, 199 (2009).
44. Jorio, A., Pimenta, M.A., Filho, A.G. Souza, Saito, R., Dresselhaus, G., Dresselhaus, M.S., New J. Physics 5, 1391 (2003).

Related content

Powered by UNSILO

Hydrogen Production via Methane Decomposition Using Ni and Ni-Cu Catalysts Supported on MgO, Al2O3 and MgAl2O4

  • José F. Pola (a1), Miguel A. Valenzuela (a2), Iván A. Córdova (a2) and J. A. Wang (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.