Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T20:39:01.505Z Has data issue: false hasContentIssue false

Hydrogen Passivation of Grain Boundaries in Polycrystalline Silicon Deposited by Molecular Beams

Published online by Cambridge University Press:  22 February 2011

D. Jousse
Affiliation:
IBM T.J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598
S. L. Delage
Affiliation:
IBM T.J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598
S. S. Iyer
Affiliation:
IBM T.J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598
M. Crowder
Affiliation:
IBM San Jose, 5600 Cottle Road, San Jose, CA 95193
Get access

Abstract

Grain boundary properties of polysilicon deposited by molecular beams have been investigated by electron spin resonance and conductivity measurements. The variations of the conductivity activation energy with doping can be explained by a density of states model consisting mainly of two exponential bandtails, implying that dangling bonds play a minor role. A hydrogen plasma treatment at 500 °C reduces the spin density by a factor of three but also passivates weak Si-Si bonds thus leading to steeper bandtails. The possibility of hydrogen-related intra-grain gap states is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsui, M., Shiraki, Y., Maruyama, E. and Ohwada, J., J. Appl. Phys. 55, 1590 (1984).CrossRefGoogle Scholar
2. Seager, C.H. and Ginley, D.S., Appl. Phys. Lett. 34, 337 (1979).Google Scholar
3. Kaplan, D., Sol, N., Velasco, G., Thomas, P.A., Appl. Phys. Lett. 33, 440 (1978).Google Scholar
4. Pankove, J.I., Carlson, D.E., Berkeyheiser, J.E., Wance, R.O., Phys. Rev. Lett. 51, 2224 (1983) C.T. Sah, J.Y.C. Aun and J.J.T. Tzou, Appl. Phys. Lett. 43 204 (1983).Google Scholar
5. Johnson, N.M., Herring, C. and Chadi, D.J., Phys. Rev. Lett. 56 769 (1986).Google Scholar
6. Oehrlein, G.S., Tromp, R.M., Lee, Y.H., and Petrillo, E.J., Appl. Phys. Lett. 45 420 (1984).Google Scholar
7. Delage, S.L., Jeng, S.J., Jousse, D., and Iyer, S.S., ”Structural and electrical properties of molecular beam deposited polycrystalline silicon”, These Proceedings.Google Scholar
8. Delage, S.L., Iyer, S.S., and Scilla, G.S., ”Unintentional impurities in silicon layers grown by molecular beam epitaxy”, to be published in 2nd Int. Silicon MBE Conf. Proceedings, Electrochem. Soc., Hawaii, 18–23 Oct. 1987 Google Scholar
9. Brodsky, M.H. and Title, R.S., Phys. Rev. Lett. 23, 581 (1969).CrossRefGoogle Scholar
10. Chung, M.F. and Haneman, D., J. Appl. Phys. 37, 1879 (1966)Google Scholar
11. Johnson, N.M., Biegelsen, D.K., and Moyer, M.D., Appl. Phys. Lett. 40, 882 (1982).Google Scholar
12. Boulitrop, F., Chenevas-Paule, A., and Dunstan, D.J., Solid State Comm. 48, 181 (1983).CrossRefGoogle Scholar
13. Jackson, W.B., Johnson, N.M., and Biegelsen, D.K., Appl. Phys. Lett. 43, 195 (1983).Google Scholar
14. Pandya, R. and Khan, B.A., J. Appl. Phys. 62, 3244 (1987).CrossRefGoogle Scholar
15. Jousse, D., Appl. Phys. Lett. 49, 1438 (1986).CrossRefGoogle Scholar
16. Campbell, D.R., Appl.Phys. Lett. 36, 604 (1980)CrossRefGoogle Scholar
17. Seto, J.Y.W., J. Appl. Phys. 46, 5247 (1975).Google Scholar
18. Baccarani, C., Ricco, B., and Spadini, G., J. Appl. Phys. 49, 5565 (1978).CrossRefGoogle Scholar
19. Werner, J. and Peisl, M., Phys. Rev. B 31, 6881 (1985).CrossRefGoogle Scholar
20. Fortunato, G. and Migliorato, P., Appl. Phys. Lett. 49, 1025 (1986).Google Scholar
21. Ginley, D.S. and Haaland, D.M., Appl. Phys. Lett. 39, 271 (1981).Google Scholar