Skip to main content Accessibility help

Hydrogen Donors in ZnO

  • M.D. McCluskey (a1), S.J. Jokela (a1) and W.M. Hlaing Oo (a1)


Zinc oxide (ZnO) has shown great promise as a wide-bandgap semiconductor with a range of optical, electronic, and mechanical applications. The presence of compensating donors, however, is a major roadblock to achieving p-type conductivity. Recent first-principles calculations and experimental studies have shown that hydrogen acts as a shallow donor in ZnO, in contrast to hydrogen's usual role as a passivating impurity. Given the omnipresence of hydrogen during growth and processing, it is important to determine the structure and stability of hydrogen donors in ZnO.

To address these issues, we performed vibrational spectroscopy on bulk, single-crystal ZnO samples annealed in hydrogen (H2) or deuterium (D2) gas. Using infrared (IR) spectroscopy, we observed O-H and O-D stretch modes at 3326.3 cm-1 and 2470.3 cm-1 respectively, at a sample temperature of 10 K. These frequencies indicate that hydrogen forms a bond with a host oxygen atom, consistent with either an antibonding or bond-centered model. In the antibonding configuration, hydrogen attaches to a host oxygen and points away from the Zn-O bond. In the bond-centered configuration, hydrogen sits between the Zn and O. To discriminate between these two models, we measured the shift of the stretch-mode frequency as a function of hydrostatic pressure. By comparing with first-principles calculations, we conclude that the antibonding model is the correct one.

Surprisingly, we found that the O-H complex is unstable at room temperature. After a few weeks, the peak intensity decreases substantially. It is possible that the hydrogen forms H2 molecules, which have essentially no IR signature. Electrical measurements show a corresponding decrease in electron concentration, which is consistent with the formation of neutral H2 molecules. The correlation between the electrical and spectroscopic measurements, however, is not perfect. We therefore speculate that there may be a second “hidden” hydrogen donor. One candidate for such a donor is a hydrogen-decorated oxygen vacancy.



Hide All
1 Johnson, N.M., Nurmikko, A.V., and DenBaars, S.P., Physics Today 53 (10), 31–6 (2000).
2 Powell, A.R. and Rowland, L.B., Proc. IEEE 90, 942–55 (2002).
3 Nakamura, S., Physica Status Solidi A 176, 1522 (1999).
4 Pearton, S.J. et al., Mat. Sci. Engin. B 82, 227–31 (2001).
5 Sugawara, Y., Mater. Sci. Forum 457-60, 963–8 (2004).
6 Ebert, W. and Kohn, E., Semicond. Sci. Tech. 18, S59–S66 (2003).
7 Czernetzki, R. et al., Physica Status Solidi A 200, 912 (2003).
8 Kim, J.H., Shepherd, N., Davidson, M., and Holloway, P.H., Appl. Phys. Lett. 83, 641–3 (2003). If a “bulk” GaN target is used, then sputter deposition of GaN is possible. However, bulk GaN is itself quite expensive, in contrast to ZnO.
9 Lendenmann, H., Bergman, J.P., Dahlquist, F., and Hallin, C., Mater. Sci. Forum 433, 901–6 (2002).
10 Koizumi, S., “N-type diamond growth,” Semiconductors and Semimetals 76, 239–59 (2003).
11 Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., and Steiner, T., Journ. Vacuum Sci. Tech B 22, 932–48 (2004).
12 Look, D.C., Mater. Sci. Engin. B 80, 383–7 (2001).
13 Ntep, J.M., Hassani, S.S., Lusson, A., Tromson-Carli, A., Ballutaud, D., Didier, G., and Triboulet, R., Journ. Crystal Growth 207, 30–4 (1999).
14 Minami, T., MRS Bulletin 25 (8), 3844 (2000).
15 Nuruddin, A. and Abelson, J.R., Thin Solid Films 394, 4963 (2001).
16 Wager, J.F., Science 300, 1245–6 (2003).
17 Prinz, G.A., Science 282, 1660–3 (1998).
18 Dietl, T. and Ohno, H., MRS Bulletin 28 (10), 714–9 (2003).
19 Kamilla, S.K. and Basu, S., Bull. Mater. Sci. 25, 541–3 (2002).
20 Steane, A., Reports on Progress in Physics 61, 117–73 (1998).
21 Parkin, S., Jiang, X., Kaiser, C., Panchula, A., Roche, K., and Samant, M., Proceedings of the IEEE 91, 661–80 (2003).
22 Jonker, B.T., Park, Y.D., Bennett, B.R., Cheong, H.D., Kiosoglou, G., and Petrou, A., Phys. Rev. B 62, 8180–3 (2000).
23 Ohno, Y., Young, D.K., Beschoten, B., Matsukura, F., Ohno, H., and Awschalom, D.D., Nature 402, 790–2 (1999).
24 Kikkawa, J.M. and Awschalom, D.D., Nature 397, 139–41 (1999).
25 Fiederling, R., Keim, M., Reuscher, G., Ossau, W., Schmidt, G., Waag, A., and Molenkamp, L.W., Nature 402, 787–90 (1999).
26 Zutic, I., Fabian, J., and Sarma, S. Das, Phys. Rev. B 64, 121201 (2001).
27 Didosyan, Y.S., Hauser, H., Reider, G.A., and Toriser, W., J. Appl. Phys. 95, 7339–41 (2004).
28 Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019–22 (2000).
29 Sharma, P., Gupta, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R., Guillen, J.M. Osorio, Johansson, Börje, and Gehring, G.A., Nature Materials 2, 673–7 (2003).
30 Mollwo, E., Z. Phys. 138, 478 (1954).
31 Thomas, D.G. and Lander, J.J., J. Chem. Phys. 25, 1136 (1956).
32 Walle, C.G. Van de, Phys. Rev. Lett. 85, 1012 (2000).
33 Cox, S.F.J., Davis, E.A., Cottrell, S.P., King, P.J.C., Lord, J.S., Gil, J.M., Alberto, H.V., Vilão, R.C., Duarte, J. Piroto, Ayres de Campos, N., Weidinger, A., Lichti, R.L., and Irvine, S.J.C., Phys. Rev. Lett. 86, 2601 (2001).
34 Hoffman, D.M., Hofstaetter, A., Leiter, F., Zhou, H., Henecker, F., Meyer, B.K., Orlinskii, S.B., Schmidt, J., and Baranov, P.G., Phys. Rev. Lett. 88, 045504 (2002).
35 McCluskey, M.D., Jokela, S.J., Zhuravlev, K.K., Simpson, P.J., and Lynn, K.G., Appl. Phys. Lett. 81, 3807 (2002).
36 and, M.D. McCluskey Jokela, S.J., in MRS Proc. Vol. 813, edited by Nickel, N.H., McCluskey, M.D., and Zhang, S.B. (Materials Research Society, PA, 2004).
37 Jokela, S.J., McCluskey, M.D., and Lynn, K.G., Physica B 340-342, 221 (2003).
38 Nickel, N.H. and Fleischer, K., Phys. Rev. Lett. 90, 197402 (2003).
39 Lavrov, E.V., Weber, J., Börrnert, F., Walle, C.G. Van de, Helbig, R., Phys. Rev. B 66, 165205 (2002).
40 Lavrov, E.V., Börrnert, F., and Weber, J., Phys. Rev. B 71, 035205 (2005).
41 Halliburton, L.E., Wang, L., Bai, L., Garces, N.Y., Giles, N.C., Callahan, M.J., Wang, B., J. Appl. Phys. 96, 7168 (2004).
48 Shi, G. Alvin, Saboktakin, M., Stavola, M., and Pearton, S.J., Appl. Phys. Lett. 85, 5601–3 (2004).
49 Loss, D. and DiVincenzo, D.P., “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–6 (1998).
50 Gupta, J.A., Awschalom, D.D., Peng, X., and Alivisatos, A.P., “Spin coherence in semiconductor quantum dots,” Phys. Rev. B 59, R104214 (1999).
51 Mulvaney, P., “Optical properties of some nanocrystal doped glasses and polymers,” Glass Science and Technology 75, 310–8, Suppl. C1 (2002).
52 Elzerman, J.M., Hanson, R., Beveren, L.H. Willems van, Witkamp, B., Vandersypen, L.M.K., and Kouwenhoven, L.P., “Single-shot read-out of an individual electron spin in a quantum dot,” Nature 430, 431–5 (2004).
53 Hlaing, W.M. Oo, McCluskey, M.D., Lalonde, A.D., and Norton, M.G., Appl. Phys. Lett. 86, 073111 (2005).
54 Walle, C.G. Van de, private communication.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed