Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T02:22:07.177Z Has data issue: false hasContentIssue false

Hydrogen Diffusion in Boron-Doped Hydrogenated Amorphous Silicon Films: Crystallization and Induced Structural Changes

Published online by Cambridge University Press:  01 February 2011

F. Kail
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex, France. Laboratoire d'Analyse des Solides, Surfaces et Interfaces, Unité de Thermique et Analyse Physique (UTAP EA 3802), Université de Reims, 51687 Reims Cedex 2, France.
A. Hadjadj
Affiliation:
Laboratoire d'Analyse des Solides, Surfaces et Interfaces, Unité de Thermique et Analyse Physique (UTAP EA 3802), Université de Reims, 51687 Reims Cedex 2, France.
P. Roca i Cabarrocas
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex, France.
Get access

Abstract

We have studied the evolution of the structure of boron-doped hydrogenated amorphous silicon films exposed to a hydrogen plasma. From the early stages of exposure, hydrogen diffuses and forms a thick H-rich subsurface. At longer times, hydrogen plasma leads to the formation of a microcrystalline layer via chemical transport without crystallization of the initial layer. We observe that the hydrogen content increases in the films during a plasma exposure and once the microcrystalline layer is formed hydrogen diffuses out of the sample accompanied with a decrease in the boron content. This effect can be attributed to the electric field developed within the heterojunction a-Si:H/μc-Si:H that drives the positively charged hydrogen atoms in the boron-doped layer towards the μc-Si:H layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kemp, M., H Branz, Phys. Rev B 52, 13946 (1995).Google Scholar
2 Kail, F., Morral, A. Fonctcuberta i, Hadjadj, A., Cabarrocas, P. Roca i and Beorchia, A., Phil. Mag, 21, 595 (2004).Google Scholar
3 Poissant, Y., Chatterjee, P., and Cabarrocas, P. Roca i, J. Non-Cryst. Solids 299-302, 1173 (2002).Google Scholar
4 Morral, A. Fontcuberta i, and Cabarrocas, P. Roca i, Thin Solid Films 383, 161 (2001).Google Scholar
5 Kail, F., Hadjadj, A., and Cabarrocas, P. Roca i, Proc. 19th European photovoltaic Solar Energy conference, ed. Hoffmann, W., Bal, J.-L., Ossenbrink, H., Palz, W. and Helm, P. (2004) 1367.Google Scholar
6 Kail, F., Hadjadj, A., Cabarrocas, P. Roca i, Thin Solid Films, In Press, Corrected Proof, Available online 26 February 2005.Google Scholar
7 An, I. and Li, Y.M., Wronski, C.R., and Collins, R.W., Phys. Rev B 38, 4464 (1993).Google Scholar
8 Cabarrocas, P. Roca i, Current Opinion in Solid State and Materials Science 6, 439 (2002).Google Scholar
9 Jellison, G. E. Jr, and Modine, F. A., Appl. Phys. Lett. 69, 371 (1996).Google Scholar
10 Bruggeman, A. G., Ann. Phys. (Leipzig) 24, 636 (1935).Google Scholar
11 Morral, A. Fontcuberta i, Clerc, C., and Cabarrocas, P. Roca i, Phys. Rev B 69, 125307 (2004).Google Scholar
12 Beyer, W., Physica B170, 105 (1991).Google Scholar
13 Stutzmann, M. and Brandt, M. S., J Appl. Phys. 68, 1406 (1990).Google Scholar