Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T18:36:11.567Z Has data issue: false hasContentIssue false

Hydrogen and Halogen Bonding on The Diamond (100)2 × 1 Surface: An Ab Initio Study

Published online by Cambridge University Press:  22 February 2011

Terttu I. Hukka
Affiliation:
Department of Chemistry, University of Joensuu, P.O. Box 111, SF-80101 Joensuu, Finland
Tapani A. Pakkanen
Affiliation:
Department of Chemistry, University of Joensuu, P.O. Box 111, SF-80101 Joensuu, Finland
Mark P. D'evelyn
Affiliation:
General Electric Corporate Research & Development, P.O. Box 8, Schenectady, NY 12301; Departments of Chemistry and Materials Engineering, Rensselaer Polytechnic Institute, Troy NY 12180-3590
Get access

Abstract

This work addresses mechanistic issues in conventional and halogen-assisted diamond growth via ab initio molecular orbital calculations on hydrogenated and halogenated carbon clusters (C9H12Xi, X=H, F, or Cl; i=O, 1, or 2) as models of the dimer-reconstructed diamond (100)2× 1 surface. The dimer bond lengths (XC-CX, XC-C., C=C) and the C-X and C=C π bond energies have been determined along with the effects of lattice constraints. The calculations show that dimer bonds are longer in clusters where only the topmost carbon layer is allowed to relax and the remaining carbon atoms are constrained to lie at diamond lattice positions than in fully relaxed clusters. The calculations also predict that the first C-X bond strength is approximately the same in constrained and fully relaxed clusters and that the second C-X bond is distinctly weaker due to π bond formation, particularly in fully relaxed clusters. These results indicate that the π bond between dimer atoms on the clean (100)-(2× 1) surface is weakened considerably by the constraints imposed by the lattice but is quite important nonetheless.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Angus, J.C., Wang, Y., Sunkara, M., Annu. Rev. Mater. Sci. 21, 221 (1991).Google Scholar
2. (a) Tsuno, T., Imai, T., Nishibayashi, Y., Hamada, K., and Fujimori, N., Jpn. J. Appl. Phys. 30, 1063 (1991); (b) H.-G. Busmann, W. Zimmermann-Edling, H. Sprang, H.-J. Giintherodt, and I.V. Hertel, Dia. Relat. Mater. 1, 979 (1992); (c) L.F. Sutcu, C.J. Chu, M.S. Thompson, R.H. Hauge, J.L. Margrave, and M.P. D'Evelyn, J. Appl. Phys. 71, 5930 (1992).Google Scholar
3. (a) Hamza, A. V., Kubiak, G. D., and Stulen, R. H., Surf. Sci. 237, 35 (1990) and G. D. Kubiak, M.T. Schulberg, and R. H. Stulen, Surf. Sci. 277, 234 (1992); (b) R.E. Thomas, R.A. Rudder, and R.J. Markunas, J. Vac. Sci. Technol. A 10, 2451 (1992); (c) Y.L. Yang, L.M. Struck, L.F. Sutcu, and M.P. D'Evelyn, Thin Solid Films 225, 203 (1993); (d) S.-T. Lee and G. Apai, Phys. Rev. B 48, 2684 (1993); (e) L.M. Struck and M.P. D'Evelyn, J. Vac. Sci. Technol. A 11, 1992 (1993).Google Scholar
4. (a) Verwoerd, W.S., Surf. Sci. 108, 153 (1981); (b) D.W. Brenner, Phys. Rev. B 42, 9458 (1990); (c) S.P. Mehandru and A.B. Anderson, Surf. Sci. 248, 369 (1991); (d) X.M. Zheng and P.V. Smith, Surf. Sci. 256, 1 (1991); (e) Y. Yang and M.P. D'Evelyn, J. Am. Chem. Soc. 114, 2796 (1992); (f) S.H. Yang, D.A. Drabold, and J.B. Adams, Phys. Rev. B 48, 5261 (1993); (g) Th. Frauenheim et al., Phys. Rev. B 48, 18189 (1993); (h) S. Skokov, C.S. Carmer, B. Weiner, and M. Frenklach, Phys. Rev. B 49, 5662 (1994).Google Scholar
5. (a) Patterson, D.E., Chu, C.J., Bai, B.J., Xiao, Z.L., Komplin, N.J., Hauge, R.H. and Margrave, J.L., Dia. Relat. Mat. 1, 768 (1992); (b) B.J. Bai, C.J. Chu, D.E. Patterson, R.H. Hauge and J.L. Margrave, J. Mater. Res. 8, 233 (1993).Google Scholar
6. Suntola, T., Mater. Sci. Reports 4, 265 (1989).Google Scholar
7. Hukka, T.I.; Rawles, R.E., and D'Evelyn, M.P., Thin Solid Films 225, 212 (1993); T.I. Hukka, R.E. Rawles, and M.P. D'Evelyn, Mater. Res. Soc. Symp. Proc. 282, 671 (1993).Google Scholar
8. Freedman, A., J. Appl. Phys. 75, 3112 (1994).Google Scholar
9. Pederson, M.R. and Pickett, W.E., in Novel Forms of Carbon, edited by Renschler, C.L., Pouch, J.J. and Cox, D.M., (Mater. Res. Soc. Proc. 270, Pittsburgh, Pennsylvania, 1992) p. 389.Google Scholar
10. Gaussian 92, Revision A, Frisch, M.J., Trucks, G.W., Head-Gordon, M., Gill, P.M.W., Wong, M.W., Foresman, J.B., Johnson, B.G., Schlegel, H.B., Robb, M.A., Replogle, E.S., Gomperts, R., Andres, J.L., Raghavachari, K., Binkley, J.S., Gonzalez, C., Martin, R.L., Fox, D.J., Defrees, D.J., Baker, J., Stewart, J.J.P., and Pople, J.A., Gaussian, Inc.: Pittsburgh PA, 1992.Google Scholar
11. Hehre, W.J., Ditchfield, R., and Pople, J.A., J. Chem. Phys. 56, 2257 (1972).Google Scholar
12. Pople, J.A., Krishnan, R., Schlegel, H.B., and Binkley, J.S., Int. J. Quantum Chem. Symp. 13, 225 (1979).Google Scholar
13. Benson, S.W., Thermochemical Kinetics (John Wiley & Sons, Inc., New York, 1976), p. 63.Google Scholar
14. D'Evelyn, M.P., Yang, Y.L., and Sutcu, L. F., J. Chem. Phys. 96, 852 (1992).Google Scholar
15. Hehre, W.J., Radom, L., Schleyer, P.v.R., and Pople, J.A., Ab Initio Molecular Orbital Theory, (John Wiley & Sons, New York, 1986), p. 275.Google Scholar
16. Hrovat, D.A. and Borden, W.T., J. Am. Chem. Soc. 110, 4710 (1988).Google Scholar
17. Hukka, T.I., Pakkanen, T.A., and D'Evelyn, M.P., in preparation.Google Scholar
18. Huheey, J.E., Inorganic Chemistry, 2nd ed. (Harper and. Row, New York, 1978), p. 847.Google Scholar
19. Yamada, T., Chaung, T.J., Seki, H., and Mitsuda, Y., Mol. Phys. 76, 887 (1992).Google Scholar