Skip to main content Accessibility help
×
Home

Hydrogen Absorption and Desorption by Magnesium-Based Nano-Composite Materials

  • Yoshitsugu Kojima (a1), Yasuaki Kawai (a1) and Tetsuya Haga (a1)

Abstract

MgH2 was mechanically milled with nano-Ni (nano-Ni/Al2O3/C) and Ni catalysts (Ni), yielding Mg-based nano-composite materials. X-ray and TEM measurements revealed that nano-Ni particles, which are 6–20 nm size, were dispersed in the MgH2 matrix. The nano-composite material with nano-Ni/Al2O3/C showed excellent properties as compared to that with Ni, a ball-milled MgH2 and the mixture of MgH2 and nano-Ni/Al2O3/C in terms of the H2 desorption and absorption. The nano-composite material with nano-Ni/Al2O3/C desorbed H2 of 4.9–5.8 wt% at 423–473 K, while the mixture could not desorb H2 at the temperature. The H2 absorption capacity at 9 MPa and room temperature in 6 hr. increased from below 0.1 wt% for the mixture to 5.0 wt % for the nano-composite material, approaching a maximum of 6.5 wt% in 70 hr. The catalyst activity was improved with decreasing Ni size. The improved kinetics is indicated by the small activation barrier, the short diffusion path length and the high driving force.

Copyright

References

Hide All
1. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S. and Heben, M. J., Nature, 386, 377 (1997).
2. Chahine, R. and Bose, T. K., Int. J. Hydrogen Energy, 19, 161 (1994).
3. Kojima, Y. and Suzuki, N., Appl. Phys. Lett., 84, 4113 (2004).
4. Sandrock, G., Report, Final, Contract N00014–97–M-0001, SunaTech, Inc., Ringwood, NJ, July 24 (1997).
5. Tamura, T., Tominaga, Y., Matumoto, K., Fuda, T., Kuriiwa, T., Kamegawa, A., Takamura, H. and Okada, M., J. Alloys Compd., 330–332, 522 (2002).
6. Amendola, S. C., Sharp-Goldman, S. L., Janjua, M. S., Kelly, M. T., Petillo, P. J. and Binder, M., J. Power Sources, 85, 186 (2000).
7. Kojima, Y., Suzuki, K., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y. and Hayashi, H., Int. J. Hydroge Energy, 27, 1029 (2002).
8. Bogdanović, B. and Schwickardi, M., J. Alloys Compd., 253–254, 1 (1997).
9. Luo, W. and Gross, K. J., J. Alloys Compd., in press.
10. Chen, P., Xiong, Z., Luo, J., Lin, J. and Tan, K. L., Nature, 420, 302 (2002).
11. Ichikawa, T., Isobe, S., Hanada, N. and Fujii, H., J. Alloys Compd., 365, 271 (2004).
12. Kojima, Y. and Kawai, Y., Chemical Commun. 2210 (2004).
13. Liang, G., Huot, J., Boily, S., Van Neste, A. and Schulz, R., J. Alloys Compd., 292, 247 (1999).
14. Barkhordarian, G., Klassen, T. and Bormann, R., J. Alloys Compd., 364, 242 (2004).
15. Newson, E., Haueter, Th., Hottinger, P., Von Roth, F., Scherer, G. W. H. and Schucan, Th. H., Int. J. Hydrogen Energy, 23, 905 (1998).
16. Li, Y., Chen, J. and Chang, L., Appl. Catal. A: General 163, 45 (1997).
17. “Powder Diffraction File,” Database Manager T. M. Kahmer, Editor-in-Chief W. F. McClune, Editor of Calculated Patterns S. N. Kabekkodu, Staff Scientist H. E. Clark, International Center for Diffraction Data (JCPDS), Pennsylvania USA (2001).
18. Ron, M., J. Alloys Compd., 283, 178 (1999).
19. Renner, J. and Grabke, H. J., Z. Metallkd, 67, 639 (1978).
20. Huot, J., Liang, G., Boily, S., Van Neste, A. and Schulz, R, J. Alloys Compd., 293–295, 495 (1999).
21. Yamaguchi, M., Akiba, E. in: Cahn, R. W., Hassen, P., Kramer, E. J. (ed.). Materials Science and Technology, vol. 3B, New York: VCH 1994, P.333.
22. Stampfer, J. F. Jr., Holley, C.E. Jr, and Suttle, J. F., J. Amer. Chem. Soc. 82 3504 (1960).

Hydrogen Absorption and Desorption by Magnesium-Based Nano-Composite Materials

  • Yoshitsugu Kojima (a1), Yasuaki Kawai (a1) and Tetsuya Haga (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed