Skip to main content Accessibility help
×
Home

Hot deformation behavior of low carbon advanced high strength steel (AHSS) microalloyed with boron

  • I. Mejía (a1), S. González-Sala (a2) and J.M. Cabrera (a2) (a3)

Abstract

This research work deals the influence of boron content on the high temperature deformation behavior of a low carbon advanced high strength steel (AHSS). For this purpose high temperature tensile and compression tests are carried out at different temperatures and constant true strain rates by using an Instron testing machine equipped with a radiant cylindrical furnace. Tensile tests are carried out at different temperatures (650, 750, 800, 900 and 1000°C) at a constant true strain rate of 0.001 s-1. Uniaxial hot compression tests are also performed over a wide range of temperatures (950, 1000, 1050 and 1100°C) and constant true strain rates (10-3, 10-2 and 10-1 s-1). In general, experimental results of hot tensile tests show an improvement of the hot ductility of the AHSS microalloyed with boron, although poor ductility at low temperatures (650 and 750°C). The fracture surfaces of the AHSS tested at temperatures showing the higher ductility (800, 900 and 1000°C) indicate that the fracture mode is a result of ductile failure, whereas in the region of poor ductility the fracture mode is of the ductile-brittle type failure. On the other hand, experimental results of hot compression tests show that both peak stress and peak strain tend to decrease in the AHSS microalloyed with boron, which indicates that boron generates a sort of solid solution softening effect in similar a way to other interstitial alloying elements in steel. Likewise, hot flow curves of the AHSS microalloyed with boron show an acceleration of the onset of dynamic recrystallization (DRX) and a delay of the recrystallization kinetics. Results are discussed in terms of boron segregation towards austenitic grain boundaries and second phase particles precipitation during plastic deformation and cooling.

Copyright

References

Hide All
1. Committee on Automotive Applications, International Iron & Steel Institute, Advanced High Strength Steel Application Guidelines, 19 (2006).
2. Duensing, L. Modern Metals 62, 92 (2006).
3. Misra, R.D.K., Weatherly, G.C., Hartmann, J.E. and Boucek, A.J., Mater Sci. Technol. 17, 1119 (2001).
4. Thelning, K.E., Steel and its Heat Treatment, (Butterworths, London, 1984).
5. Leslie, W.C., The Physical Metallurgy of Steels, (McGraw-Hill, USA, 1981).
6. Kapadia, B.M., in Hardenability Concepts with Application to Steel, edited by Doane, D.V. and Kirkaldy, J.S., (The Metallurgical Society of the AIME, Warrendale, PA., USA, 1978) pp. 448480.
7. Mortimer, D.A. and Nicholas, M.G., Met. Sci. 10, 326 (1976).
8. Morral, J.E. and Cameron, J.B., Met. Trans. A 8, 1817 (1977).
9. Maitrepierre, Ph., Thivellier, D. Roves-Vernis, J., Rousseau, D. and Tricot, R. in Hardenability Concepts with Application to Steel, edited by Doane, D.V. and Kirkaldy, J.S., (The Metallurgical Society of the AIME, Warrendale, PA, USA, 1978) pp. 421447.
10. Sharma, R.C. and Purdy, G.R., Met. Trans. 5, 939 (1974).
11. Comineli, O., Abushosha, R. and Mintz, B. Mater Sci. Technol. 15, 1058 (1999).
12. Mintz, B., Mohamed, Z. and Abushosha, R. Mater Sci. Technol. 5, 682 (1989).
13. Suzuki, K., Miyagawa, S., Saito, Y. and Shiotani, K. ISIJ Int. 35, (34 1995).
14. Kim, S.K., Kim, J.S. and Kim, N.J., Metall. Mater. Trans. A 33, 701 (2002).
15. Morral, J.E. and Cameron, J.B., in Boron Hardenability Mechanisms, Boron in Steels, edited by Banerji, S.K. and Morral, J.E., (Proc. of the Metallurgical Society of AIME, Milwaukee, Wisconsin, USA, 1979) pp. 19.
16. Hondros, E.D. and Seah, M.P., Int. Met. Rev. 22, 262 (1977).
17. Luo, H.–W., Zhao, P., Zhang, Y. and Dang, Z.–J. Mater. Sci. Technol. 17, 843 (2001).
18. Tarboton, J.N., Matthews, L.M., Sutcliffe, A., Frost, C.M.P. and Wessels, J.P., Mater. Sci. Forum 318–3, 777 (1999).
19. Mintz, B. and Abushosha, R. Mater. Sci. Technol. 8, 171 (1992).
20. Lopéz-Chipres, E., Mejía, I., Maldonado, C., Bedolla-Jacuinde, A. and Cabrera, J.M., Mater. Sci. Eng. A 460–461, 464 (2007).
21. López-Chipres, E., Mejía, I., Maldonado, C., Bedolla-Jacuinde, A., El-Wahabi, M. and Cabrera, J.M., Mater. Sci. Eng. A 480, 49 (2008).
22. Mejía, I., López-Chipres, E., Maldonado, C., Bedolla-Jacuinde, A. and Cabrera, J.M., Int. J. Mat. Res. (formerly Z. Metallkd.) 99, 12 (2008).
23. Sakai, T. and Jonas, J.J., Acta Metall. 32, 189 (1984).
24. Zarandi, F. and Yue, S., ISIJ Int. 46, 591 (2006).
25. Lagerquist, M. and Langenborg, R. Scand. J. Metall. 1, 81 (1972).
26. Mintz, B., Yue, S. and Jonas, J.J, Int. Mater. Rev. 36, 187 (1991).
27. Nachtrab, W.T. and Chou, Y.T., J. Mater. Sci. 19, 2136 (1984).
28. Maehara, Y., Yasumoto, K., Tomono, H., Nagamichi, T. and Ohmori, Y. Mater. Sci. Technol. 6, 793 (1990).
29. Nachtrab, W.T. and Chou, Y.T., Metall. Trans. A 17, 1995 (1986).
30. Nachtrab, W.T. and Chou, Y.T., Metall. Trans. A 19, 1305 (1988).
31. Abushosha, R., Vipond, R. and Mintz, B. Mater. Sci. Technol. 7, 1101 (1991).
32. Matsuoka, H., Osawa, K., Ono, M. and Ohmura, M. ISIJ Int. 37, 255 (1997).
33. Nagasaki, C. and Kihara, J. ISIJ Int. 37, 523 (1997).
34. Song, S.–H., Guo, A.–M., Shen, D.–D., Yuan, Z.–X., Jiu, J. and Xu, T.–D. Mater. Sci. Eng. A 360, 96 (2003).
35. Mintz, B. ISIJ Int. 39, 833 (1999).
36. Mintz, B., Abushosha, R. and Crowther, D. N., Mat. Sci. Technol. 11, 474 (1995).
37. Xu, T.–D., Song, S.–H., Yuan, Z.–X. and Yu, Z.–S. J. Mater. Sci. 25, 1739 (1990).
38. Song, S.–H., Xu, T.–D., Yuan, Z.–X. and Yu, Z.–S. Acta Metall. Mater. 39, 909 (1991).
39. Xu, T.–D., Song, S.–H., Shi, H.–Z. Yuan, Z.–X and Gust, W. Acta Metall. Mater. 39, 3119 (1991).
40. He, X.L., Chu, Y.Y. and Jonas, J.J., Acta Metall. Mater. 37, 147 (1989).
41. Cao, B., Wang, X.–W., Cui, H.–Y and He, X.L., J. Univ. Sci. Technol., B9, 347 (2002).
42. Zhang, Z.L., Lin, Q.–Y. and Yu, Z.–S. Mater. Sci. Technol. 16, 305 (2000).
43. Seah, M.P., Acta Metall. Mater. 28, 955 (1980).
44. Humphreys, F.J. and Hatherly, M. Recrystallization and Related Annealing Phenomena, (Pergamon Press, Oxford, 1995).
45. He, X.L., Djahazi, M., Jonas, J.J. and Jackman, J. Acta Metall. Mater. 39, 2295 (1991).
46. Djahazi, M., He, X.L., Jonas, J.J. and Collins, L. in Recrystallization '90, edited by Chandra, T. (TMS-AIME, 1990) pp. 681.
47. Djahazi, M., He, X.L. and Jonas, J.J., in Proc. Int. Conf. on Phys. Metall. of Thermomechanical Processing of Steels and Other Metals, edited by Tamura, I. (Thermec-88 (1), Tokyo, Japan, 1988) pp. 246.
48. Djahazi, M., He, X.L., Jonas, J.J. and Ruddle, G.E., in Proceedings of the International Symposium on Processing, Microstructure and Properties of HSLA Steels, edited by Deardo, A.J., (TMS-AIME, Warrendale, PA, 1988) pp. 69.
49. Sakai, T., Xu, Z. and Zhang, G.R., Tetsu-to-Hagané 80, 557 (1994).
50. Xu, Z., Zhang, G.R. and Sakai, T. ISIJ Int. 35, 210 (1995).
51. Escobar, F., Cabrera, J.M. and Prado, J.M., Mater. Sci. Technol. 19, 1137 (2003).
52. Schulson, E.M., Weihs, T.P., Viens, D.V. and Baker, I. Acta Metall. Mater. 33, 1587 (1985).

Hot deformation behavior of low carbon advanced high strength steel (AHSS) microalloyed with boron

  • I. Mejía (a1), S. González-Sala (a2) and J.M. Cabrera (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed