Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T06:56:09.428Z Has data issue: false hasContentIssue false

Homoepitaxial Growth of Vertical Si Nanowires on Si(100) Substrate using Anodic Aluminum Oxide Template

Published online by Cambridge University Press:  01 February 2011

Tomohiro Shimizu
Affiliation:
shimizu@mpi-halle.de, Max Planck Institute of Microstructure Physics, Experimental Department II, Weinberg 2, Halle, 06120, Germany, +49 - 345 - 5582 672
Tian Xie
Affiliation:
Max Planck Institute of Microstructure Physics, Halle, 06120, Germany
Volker Schmidt
Affiliation:
vschmidt@mpi-halle.de, Max Planck Institute of Microstructure Physics, Halle, 06120, Germany
Jo Nishikawa
Affiliation:
sa6m104@edu.kansai-u.ac.jp, Kansai University, Graduate School of Engineering, Osaka, 564-8680, Japan
Shoso Shingubara
Affiliation:
shingu@ipcku.kansai-u.ac.jp, Kansai University, Graduate School of Engineering, Osaka, 564-8680, Japan
Stephan Senz
Affiliation:
senz@mpi-halle.de, Max Planck Institute of Microstructure Physics, Halle, 06120, Germany
Ulrich Goesele
Affiliation:
goesele@mpi-halle.mpg.de, Max Planck Institute of Microstructure Physics, Halle, 06120, Germany
Get access

Abstract

Homo-epitaxial growth of Si nanowires on Si (100) substrate was accomplished using a combination of anodic aluminum oxide (AAO) template and Vapor-Liquid-Solid (VLS) growth. We prepared two types of AAO template for epitaxial growth of Si nanowires.

We observed vertically grown epitaxial Si (100) nanowires in the AAO template. In addition, after leaving filled pores, Si nanowires changed their growth direction from [100] to <111>. This result shows that the walls of the pores forced the growth direction of Si nanowires parallel to the direction of the pores, and after complete filling, the growth direction changes to that of the Si nanowires on a bare Si substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmidt, V., Senz, S., Gösele, U., Nano Lett., 5, 931 (2005).Google Scholar
2. Masuda, H., Fukuda, K., Science, 268, 1466 (1995).Google Scholar
3. Chu, S. Z., Wada, K., Inoue, S., Todoroki, S., Takahashi, Y. K., Hono, K., Chem. Mater., 14,4595 (2002).Google Scholar
4. Yang, Y., Chen, H., Mei, Y., Chen, J., Wu, X.. Bao, X., Solid State Communications, 123, 279 (2002).Google Scholar
5. Shimizu, T., Nagayanagi, M., Ishida, T., Sakata, O., Oku, T., Sakaue, H., TTakahagi, ., Shingubara, S., Electrochem. and Solid-State Lett.,9, J13 (2006).Google Scholar
6. Masuda, H., Nishio, K., Baba, N., J. Mater. Sci. Lett., 13, 338 (1994).Google Scholar
7. Shimizu, T., Senz, S., Shingubara, S., and Gösele, U., Appl. Phys. A, 87, 607 (2007)Google Scholar
8. Shimizu, T., Xie, T., Nishikawa, J., Shingubara, S., Senz, S., and Gösele, U., Adv. Mater. 19, 917(2007)Google Scholar