Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T02:31:36.804Z Has data issue: false hasContentIssue false

Hole Conductors and Superconductors

Published online by Cambridge University Press:  21 February 2011

J.E. Hirsch*
Affiliation:
Department of Physics, University of California, San Diego, La Jolla, CA 92093
Get access

Abstract

A fundamental asymmetry exists between electrons and holes in solids. Electrons at the Fermi surface give rise to high conductivity and normal metallic behavior, holes at the Fermi surface yield poor conductivity and give rise to superconductivity. We review here the theoretical basis for this assertion and its implications, particularly for the understanding of high temperature superconductivity in oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Ashcroft, N.W. and Mermin, N.D., Solid State Physics (Holt, Reinhart and Winston, New York, 1976), Chpt. 12. The origin of this sometimes useful but misleading conception goes back to W. Heisenberg, Ann. der Phys. 10, 888 (1931).Google Scholar
2. Hirsch, J.E., Phys. Lett. A 134, 451 (1989).Google Scholar
3. Hirsch, J.E. and Tang, S., ”Effective Interactions in an Oxygen Hole Metal,” UCSD preprint, December 1988, submitted to Phys. Rev. B.Google Scholar
4. Hirsch, J.E. and Tang, S., Sol. St. Comm. 69, 987 (1989).Google Scholar
5. Hirsch, J.E. and Marsiglio, F., ”Superconductivity in an Oxygen Hole Metal,” UCSD preprint, December 1988, submitted to Phys. Rev. Lett.Google Scholar
6. Hirsch, J.E., Physica C, to be published.Google Scholar
7. Hubbard, J., Proc. Roy. Soc. London A276, 238 (1963).Google Scholar
8. Hirsch, J.E., ”Coulomb Attraction Between Bloch Electrons,” UCSD preprint, March 1989, submitted to Phys. Lett. A.Google Scholar
9. Hirsch, J.E. and Marsiglio, F., Phys. Rev. B, to be published.Google Scholar
10. deGennes, P.G., Superconductivity of Metals and Alloys (Benjamin, New York, 1966), pg. 125; N.N. Bogoliubov, Nuovo Cimento 7, 794 (1958).Google Scholar
11. Hirsch, J.E. and Marsiglio, F., ”On the Dependence of Superconducting T, on Carrier Concentration,” UCSD preprint, April 1989, submitted to Phys. Lett. A.Google Scholar
12. Torrance, J. et al., Phys. Rev. Lett. 61, 1127 (1988); M.W. Shafer et al., Phys. Rev. B 39, 2914 (1989).Google Scholar
13. Hulm, J.K. and Blaugher, R.D., Phys. Rev. 123, 1569 (1961).Google Scholar
14. Marsiglio, F. and Hirsch, J.E., ”Tunneling Asymmetry: A Test of Superconductivity Mechanisms,” UCSD preprint, March 1989, submitted to Physica C.Google Scholar
15. Guo, Y., Langlois, J.M. and Goddard, W.A., Science 239, 896 (1988).Google Scholar
16. Homan, G.C.W. et al., Physica B+C 107, 9 (1982); T.H. Geballe and C.W. Chu, Sol. St. Phys. 9, 115 (1979); R.A. Ogg, Phys. Rev. 69, 243 (1946).Google Scholar
17. Scalapino, D.J., Scalettar, R.T. and Bickers, N.E., Proc. Intl. Conf. on Novel Mechanisms of Superconductivity, edited by Wolf, S.E. and Kresin, V.Z. (Plenum, New York, 1987), p. 475.Google Scholar
18. Cava, R.J. et al., Nature 332, 814 (1988).Google Scholar
19. Batlogg, B., Physica 126B, 275 (1984).Google Scholar
20. Tani, T., Itoh, T. and Tanaka, S., J. Phys. Soc. Japan 49, 309 (1980).Google Scholar
21. Tokura, Y., Takagi, H. and Uchida, S., Nature 337, 345 (1989).Google Scholar
22. Emery, V.J. and Reiter, G., Phys. Rev. B 38, 4547 (1988).Google Scholar
23. Aharony, A. et al., Phys. Rev. Lett. 60, 1330 (1988).Google Scholar
24. Varma, C., Schmitt-Rink, S. and Abrahams, E., Sol. St. Comm. 62, 681 (1987).Google Scholar
25. Balseiro, C.A. et al., Phys. Rev. B 38, 9315 (1988) and references therein.Google Scholar
26. See, for example, Izyumov, Y.A. and Kurmaev, E.Z., Sov. Phys. Usp. 19, 26 (1976).Google Scholar
27. Ref. 6 discusses how an isotope effect arises within this mechanism.Google Scholar