Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T03:20:03.413Z Has data issue: false hasContentIssue false

HI/H2 ECR Plasma Etching of III-V Semiconductors

Published online by Cambridge University Press:  25 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
U. K. Chakrabarti
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. R. Fullowan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

HI/H2/Ar discharges are shown to be universal etchants for rn-V semiconductors, giving rise to highly anisotropic features with smooth surface morphologies. At loy dc self bia:s (-100V) and low pressure (1 mTorr), etch rates for all III-V materials of >2000Å min−1 are possible for high HI percentages in the discharges, whereas rates greater than 1 Åm min−1 are obtained at higher pressures and dc biases. These etch rates are approximately an order of magnitude faster than for CH4/H2/Ar mixtures under the same conditions and there is no polymer deposition on the mask or within the reactor chamber with HI/H2/Ar. Auger Electron Spectroscopy reveals residue-free, stoichiometric surfaces after dry etching in this mixture. As i result, photoluminescence intensities from dry etched samples remain high with little apparent damage introduction. Changes in the near-surface carrier concentration due to hydrogen passivation effects are also negligible with HI-based mixtures in comparison to CH4-based dry etching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Semura, S., Saitoh, H. and Asakawa, K., J. Appl. Phys. 55, 3131 (1984).Google Scholar
2. Hu, E. L. and Howard, R. E., J. Vac. Sci. Technol. B2, 85 (1984).Google Scholar
3. Hayes, T. R. in InP and Related Materials: Processing, Technology and Devices, ed. Katz, A. (Artech House, Boston 1991), p. 277.Google Scholar
4. Niggebrugge, U., Klug, M. and Garus, G., Inst. Phys. Conf. Ser. 79 367 (1985).Google Scholar
5. Cheung, R., Thorns, S., Beaumont, S. P., Doughty, G., Law, V. J. and Wilkinson, C. D. W., Electron Lett. 23 857 (1987).Google Scholar
6. Pearton, S. J., Hobson, W. S., Baiocchi, F. A., Emerson, A. B. and Jones, K. S., J. Vac. Sci. Technol. B8 57 (1990).CrossRefGoogle Scholar
7. Flanders, D. C., Pressman, L. D. and Pinelli, G., J. Vac. Sci. Technol. B8 1990 (1990).Google Scholar
8. Francis, S. M., Goulding, P. A. and Pemble, M. E., Vacuum 41 909 (1990).Google Scholar