Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-30T01:25:28.661Z Has data issue: false hasContentIssue false

High-Temperature Thermoelectric Properties of Pb1-xSnxTe:In

Published online by Cambridge University Press:  01 February 2011

Vladimir Jovovic
Affiliation:
joottu-thiagaraj.1@osu.edu, The Ohio State University, Mechanical Engineering, 201 West 19th Ave., W490 Scott Laboratory, Columbus, OH, 43210, United States
Suraj Joottu Thiagarajan
Affiliation:
joottu-thiagaraj.1@osu.edu, The Ohio State University, Columbus, OH, 43210, United States
Joseph P. Heremans
Affiliation:
heremans.1@osu.edu, The Ohio State University, Columbus, OH, 43210, United States
Dmitry Khokhlov
Affiliation:
khokhlov@mig.phys.msu.ru, Moscow State University, Moscow, 119992, Russian Federation
Tanya Komissarova
Affiliation:
khokhlov@mig.phys.msu.ru, Moscow State University, Moscow, 119992, Russian Federation
Andrei Nicorici
Affiliation:
nicorici@usm.md, Moldova Academy of Sciences, Kishinev, 2009MD, Moldova
Get access

Abstract

Indium in Pb1-xSnxTe alloys forms a resonant energy level in the conduction or valence bands, depending on x. In this study we investigate temperature dependence of the In level from 80 to 400K, complementing our previous work at 80 K. Measurements of electrical resistivity, thermopower, Hall and transverse Nernst-Ettinghausen effect are used to assess carrier mobility, Fermi level and scattering coefficient. Measurements are performed on a set of p and n type Pb1-xSnxTe:In with 0 < x < 30 at% and In up to 3 at%. We show that with increasing temperature the Fermi level crosses into the gap. It had been suggested theoretically that hybridization of the In level with one band at the Fermi level could have had a positive effect on the thermoelectric properties of materials, but the present results illustrate the need for temperature-dependent modeling and experimentation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wood, C., “Materials for thermoelectric energy conversion”, Rep. Prog. Phys. 51 459539 (1988)Google Scholar
2 Dimmock, J. O., Melngailis, I, Strauss, A.J., Phys. Rev. Lett. 16 1193 (1966)Google Scholar
3 Harman, T. C., Melngailis, A. J., Appl. Solid State Sci. 4 1 (1974)Google Scholar
4 Kurbatov, L. N., Britov, A. D., Karavaev, S. M., Sov. Phys. Semicond. 10 152 (1976)Google Scholar
5“Landolt-Boernstein Nu,merical data and functional relationships in science and technology”, Vol 17, subvol f “Physics of non-tetrahedrally bondedn binary compounds II”, Madlung, O., Schultz, M. and Weiss, H., editors, Springer-Verlag, Berlin, 1983 Google Scholar
6 Lent, C. S., Bowen, M. B., Allgaier, R. S., Dow, J. D., Sankey, O. F. and Ho, E. S., Solid State Cummun. 61 8387 (1987)Google Scholar
7 Hoang, Khang, Mahanti, S. D., and Jena, Puru, Phys. Rev. B 76, 115432 (2007)Google Scholar
8 Kaidanov, V. I., Ravich, Yu. I., Sov. Phys. Usp. 28 31 (1985)Google Scholar
9 Nemov, S. A., Ravich, Yu. I., Berezin, A. V., Gasumyants, V. E., Zhitinskaya, M. K., Proshin, V. I., Semicond. 27 165 (1993); V. G. Golubev, N. I. Grecho, S. N. Lykov, E. P. Sabo, I. A. Chernik, Sov. Phys. Semicond. 11 1001 (1977)Google Scholar
10. Takaoka, S., Itoga, T. and Murase, K., Solid State Commun. 46 287290 (1983)Google Scholar
11. Jovovic, V., Thiagarajan, S. J., Heremans, J. P., Komissarova, T., Khokhlov, D. and Nicorici, A., “Low temperature thermal, thermoelectric and thermomagnetic transport in indium rich Pb1-xSnxTe alloys“, to be publishedGoogle Scholar
12. Mahan, G. D. and Sofo, J. O., Proc. Natl. Acad. Sci. USA 93 7436 (1996)Google Scholar
13. Kaidanov, V. I., Nemov, S. A., Ravich, Yu. I., Sov. Phys. Semicond. 26, 113 (1992 Google Scholar
14. Gruzinov, B. F., Drabkin, I. A., Zakharyugina, G. F., Matveenko, A. V. and Nel'son, I. V., Sov. Phys. Semicond. 13 190192 (1979)Google Scholar
15. Veis, A. N. and Nemov, S. A., Sov. Phys. Semicond. 16 725727 (1982)Google Scholar
16. Takaoka, S., Itoga, T. and Murase, K., Jap. J. Appl. Phys. 23 216 (1984)Google Scholar
17. Baker, D. R. and Heremans, J. P., Phys. Rev. B 59 13927 (1999)Google Scholar
18. Heremans, J.P., Thrush, C. M. and Morelli, D. T., Phys. Rev. Lett. 86 20982101 (2001); Phys. Rev. B 65 035209-1 – 8 (2002)Google Scholar
19. Heremans, J. P., Thrush, C. M. and Morelli, D. T., J. Appl. Phys. 98 063703 (2005)Google Scholar
20. Preier, H., Appl. Phys. 20, 189 (1979)Google Scholar
21. E, H. Putley, “The Hall effect and semiconductor physicsDover Publications Inc., New York (1968)Google Scholar
22. Heremans, J. P., “Nanometer-scale Thermoelectric Materials”, Springer Handbook of Nanotechnology, 2nd Edition, Bhushan, B., Editor, pp 435473, Springer-Verlag, Berlin (2007)Google Scholar
23. Jovovic, V., Thiagarajan, S. J., West, J., Heremans, J. P., Story, T., Golacki, Z., Paszkowicz, W. and Osinniy, V., Transport and magnetic properties of dilute rare-earth-PbSe alloys, J. Appl. Phys. 102, 043707 16 (2007)Google Scholar