Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T11:57:12.122Z Has data issue: false hasContentIssue false

High-Pressure X-Ray Diffraction Studies of Elastic Anomalies in Superlattice

Published online by Cambridge University Press:  26 February 2011

Y. Fujii
Affiliation:
Univ. of Tsukuba, Inst. of Mat. Sci., Tsukuba 305, Japan
Y. Ohishi
Affiliation:
Sumitomo Chem. Ind., Tsukuba 300–32, Japan
H. Konishi
Affiliation:
Jpn. Atomic Energy Res. Inst., Tokai 319–11, Japan
N. Nakayama
Affiliation:
Kyoto Univ., Dept. of Chem., Kyoto 606, Japan
T. Shinjo
Affiliation:
Kyoto Univ., Inst. of Chem. Res., Uji 611, Japan
Get access

Abstract

This paper has made an overview on elastic and structural aspects of three distinct superlattices under hydrostatic pressure up to about 8GPa, which were studied by our unique x-ray diffraction technique incorporated with a diamond-anvil cell. They are metallic fcc/fcc Au/Ni, bcc/fcc Mo/Ni, and semiconductive epitaxially-grown PbSe/SnSe superlattices. In their layer-stacking direction, both metallic superlattices show the supermodulus behavior while the semiconductive one doesn't. However, its pressure-driven cubic-to-orthorhombic phase transition, successively taking place in the SnSe and PbSe layers, has been found to significantly shift by stress due to its epitaxial growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koehler, J.S., Phys. Rev. B2, 547 (1970).Google Scholar
2. Yang, W.M.C., Tsakalakos, T., and Hilliard, J.E., J. Appl. Phys. 48, 876 (1977).Google Scholar
3.See, for example, Schuller, I.K., Physics, Fabrication and Application of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Plenum Press, New York and London, 1988) p.139; I.K. Schuller, A. Fartash, and M. Grimsditch, MRS Bulletin (Oct. 1990) p.3 3.CrossRefGoogle Scholar
4. Khan, M.R., Chun, C.S.L., Felcher, G.P., Grimsditch, M., Kueny, A., Falco, C.M., and Schuller, I.K., Phys. Rev. B27, 7186 (1983).Google Scholar
5. Ohishi, Y., Fujii, Y., Nakayama, N., Shinjo, T., Matsushita, T., and Fujita, J., Multilayers (MRS Intn'l Meeting on Advanced Materials) 10, 569 (1990).Google Scholar
6. Fujii, Y., Ohishi, Y., Kowaka, M., Hamaya, N., Takemura, K., Hoshino, S., Tsuji, K., and Minomura, S., Physica 139&140B, 907 (1986).Google Scholar
7.For example, Jayarahman, A., Rev. Mod. Phys. 55, 65 (1983); Rev. Sci. Instrum. 57, 1013 (1986).CrossRefGoogle Scholar
8. Ohishi, Y., PhD. thesis,Univ. of Tsukuba, 1991.Google Scholar
9. Konishi, H., Fujii, Y., Ohishi, Y., Hamaya, N., Kawada, H., Nakayama, N., Yu, R., Donomae, H., Shinjo, T., and Matsushita, T., to be presented at SRI-91 (Chester, U.K., July 1991).Google Scholar
10. Clemens, B.M. and Eesley, G.L., Phys. Rev. Lett. 61, 2356 (1988).Google Scholar
11. Fujii, Y., Ohnishi, T., Ishihara, T., Yamada, Y., Kawaguchi, K., Nakayama, N., and Shinjo, T., J. Phys. Soc. Jpn. 55, 251 (1986).Google Scholar
12. Ohishi, Y., Shingaki, N., Fujii, Y., Hiroi, Z., Nakayama, N., Bando, Y., and Shinjo, T., High Pressure Research 4, 300 (1990).Google Scholar
13. Fujii, Y., Kitamura, K., Onodera, A., and Yamada, Y., Solid State Commun. 49, 135 (1984).Google Scholar
14. Chattopadhyay, T., Werner, A., Schnering, H.G., and Pannetier, J., Revue Phys. Appl. 19, 807 (1984).Google Scholar
15. Hiroi, Z., Nakayama, N., and Bando, Y., J. Appl. Phys. 61, 206 (1987); Z. Hiroi, Phil. Magazine B 61, 895 (1990).Google Scholar
16. Ohishi, Y., Fujii, Y., Hiroi, Z., Nakayama, N., Bando, Y., and Shinjo, T., (private commun.).Google Scholar
17. Fujii, Y., Ohishi, Y., and Axe, J.D., (private commun.).Google Scholar
18. Imafuku, M., Sasajima, Y., Yamamoto, R., and Doyama, M., J. Phys. F 16, 823 (1986).Google Scholar