Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-20T14:02:56.568Z Has data issue: false hasContentIssue false

Highly Oriented Plate-like Rod/Tube Arrays of ZnO

Published online by Cambridge University Press:  15 February 2011

Ying Dai
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Long Q. Zhou
Affiliation:
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Yue L. Sun
Affiliation:
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Wen Chen
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Yue Zhang
Affiliation:
Department of Materials Physics, University of Science and Technology Beijing, Beijing 100083, China
Get access

Abstract

Highly oriented plate-like rod/tube arrays of ZnO are synthesized by a solution-based approach at low temperature. The ZnO rod/tube arrays grow oriented vertically on silicon substrate and the intersectant ZnO nanosheets stand on the backbones of ZnO rods/tubes. The constructions of plate-like rod or tube arrays depend on the processing conditions. The growth mechanisms are investigated based on the nucleation and growth process. The initial ZnO film formed on substrate is crucial for the growth of ZnO rods/tubes perpendicular to the substrate. The nanosheets grow around the ZnO rods/tubes by the secondary nucleation and growth process. The ZnO tubes are formed by the etching of the ZnO polar faces. The novel ZnO structures are expected to have great potential for electronics, photoelectronics, sensors, and catalysis etc.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Huang, M. H., Man, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P., Science 292, 1897 (2001).Google Scholar
2. Melosh, N. A., Boukai, A., Diana, F., Gerardot, B., Badolato, A., Petroff, P. M. and Heath, J. R., Science 300, 112 (2003).Google Scholar
3. Cui, Y. and Lieber, C. M., Science 291, 851 (2001).Google Scholar
4. Tanase, M., Bauer, L. A., Hultgren, A., Silevitch, D. M., Sun, L., Reich, D. H., Searson, P. C. and Meyer, G. J., Nano. Lett. 1, 155 (2001).Google Scholar
5. Yang, P. and Kim, F., ChemPhysChem. 3, 503 (2002).Google Scholar
6. Messer, B., Song, J. H. and Yang, P., J. Am. Chem. Soc. 122, 10232 (2000).Google Scholar
7. Heo, Y. W., Norton, D. P., Tien, L. C., Kwon, Y., Kang, B. S., Ren, F., Pearton, S. J. and LaRoche, J. R., Materials Science and Engineering R 47, 1 (2004).Google Scholar
8. Wang, Z. L., J. Phys.: Condens. Mater. 16, 829 (2004).Google Scholar
9. Dai, Y., Zhang, Y., Li, Q. K. and Nan, C. W., Chemical Physics Letter 358, 83 (2002).Google Scholar
10. Dai, Y., Zhang, Y., Bai, Y. Q., Wang, Z. L., Chemical Physics Letter 375, 96 (2003).Google Scholar
11. Tian, Z. R., Voigt, J. J. A., Liu, J., Mckenzie, B., Mcdermott, M. J., Rodriguez, M. A., Konishi, H. and Xu, H., Nature Materials 2, 821 (2003).Google Scholar
12. Yaubert, A., Kubel, C. and Martin, D. C., J. Phys. Chem. B 107, 2660 (2003).Google Scholar
13. Liu, B., Yu, S. H., Zhang, F., Li, L., Zhang, Q., Ren, L. and Jiang, K., J. Phys. Chem. B 108, 4338 (2004).Google Scholar
14. Boyle, D. S., Govender, K. and O'Brien, P., Chem. Commun. 80, (2002).Google Scholar
15. Vayssieres, L., Keis, K., Hagfeldt, A. and Lindquist, S. E., Chem. Mater. 13, 4395 (2001).Google Scholar