Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T18:07:32.811Z Has data issue: false hasContentIssue false

Highly Fluorinated Hybrid Glasses doped with (Erbium-ions/CdSe Nanoparticles) Designed for Advanced Laser Amplifiers

Published online by Cambridge University Press:  01 February 2011

Kyung M. Choi
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, U.S.A.
John A. Rogers
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, U.S.A.
Get access

Abstract

Bridged polysilsesquioxanes were synthesized by modifying the Si-O-Si polymeric network to produce highly nanoporous glasses for facile and uniform doping of nanoparticles. By taking advantages of void volumes created through the molecular modification technique, we designed and synthesized hexylene- and fluoroalkylenebridged polysilsesquioxanes doped with both Er+3 ions/CdSe nanoparticles for amplifier applications. Significant enhancement in fluorescence intensity at 1540 nm has been observed from the fluoroalkylene-bridged glass. Analysis by nuclear magnetic resonance (NMR) indicates a dramatically enhanced degree of condensation and a low level of hydroxyl environment in the fluoroalkylene-bridged hosts. The presence of CdSe nanoparticles, by virtue of their low phonon energy, also appears to significantly influence the nature of the surrounding photoluminescence environment of Er+3 ions in those organically modified hosts, resulting in the increased photoluminescence intensity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.(a) Agaskar, P.A.; Day, V.W.; Klemperer, W.G., J. Am. Chem. Soc. 109, 5554 (1987). (b) H. Schmidt, “Sol-Gel Science and Technology”; World Scientific Singapore, 1989, p.432. (c) B. M. Novak, Adv. Mater. 5, 422 (1993). (d) Y. Haruvy; S. E. Webber, Chem. Mater. 3, 501 (1991).Google Scholar
2.(a) Corriu, R. J. P.; Moreau, J. J. E.; Thepot, P.; Man, M.W. C.; Chorro, C.; Lere-Porte, J. P.; Sauvajol, J. L., Chem. Mater. 6, 640 (1994). (b) R. H. Baney; M. Itoh; A. Sakakibara; T. Suzuki, Chem. Rev. 95, 1409 (1995).Google Scholar
3.(a) Choi, K. M.; Shea, K. J., Chem. Mater. 5, 1067 (1993). (b) K. M. Choi; K. J. Shea, J. Am. Chem. Soc. 116, 9052 (1994).Google Scholar
4.(a) Choi, K. M.; Shea, K. J., J. Phys. Chem. 98, 3207 (1994). (b) K. M. Choi; K. J. Shea, J. Phys. Chem. 99, 4720 (1995). (c) K. M. Choi; K. J. Shea, J. of Sol-Gel Sci. Tech. 5, 143 (1995).Google Scholar
5.(a) Shea, K. J.; Loy, D. A., Chem. Rev. 95, 1431 (1995) (b) K. J. Shea; D. A. Loy; O. W. Webster, J. Am. Chem. Soc. 114, 6700 (1992). (c) K. J. Shea; D. A. Loy, MRS Bulletin 26, 368 (2001).Google Scholar
6. Choi, K. M.; Shea, K. J., “Photonic Polymer Systems, Fundamentals, Methods, and Applications” edited by Wise, D. L. et al., World Scientific Publishing Co. Pte. Ltd., 49 (1998).Google Scholar
7. Urquhart, P., IEEE Proceedings 135, 385 (1988).Google Scholar
8. Oviatt, H. W.; Shea, K. J.; Small, J. H., Chem. Mater. 5, 943 (1993).Google Scholar
9. DiGiovanni, D. J., “Optical Waveguide Materials”, edited by Broer, M. M. et al. 244, 135 (1992).Google Scholar