Skip to main content Accessibility help
×
Home

Highly Efficient Dye-sensitized Solar Cells

  • Liyuan Han (a1) and Ashraful Islam (a1)

Abstract

The present paper discusses the principle of dye-sensitized solar cells (DSCs) in terms of equivalent circuit model and the key issues to improve the device efficiency. Equivalent circuit model is proposed following analysis by electrochemical impedance spectroscopy of the voltage dependence of the internal resistance elements of DSCs. The influence of these elements upon cell performance in areas such as short circuit current density (Jsc ), open circuit voltage (Voc ), and fill factor (FF) was examined based on the equivalent circuit. Efficient sensitization of nanocrystalline TiO2 film was observed across the whole visible range and into the near-IR region as far as 1000 nm with a new panchromatic substituted β-diketonato Ru(II)-terpyridine dye (HIG1). Introduction of bulky alkyl substituent group in a β-diketonato Ru(II)-terpyridine dye (A3) suppress aggregate formation result in an improved performance of DSCs and the performance is independent of the additive added during the dye adsorption process. The haze factor of TiO2 electrodes is a useful index when fabricating light-confined TiO2 electrodes to improve Jsc . It was demonstrated that blocking of bare TiO2 surface with small molecules is an effective way of suppress interfacial charge recombination at the TiO2-dye/electrolyte interface and of improving shunt resistance and Voc . FF was also improved by reduction of the internal series resistance, which is composed of the following three elements: the redox reaction resistance at the platinum counter electrode, the resistance of carrier transport by ions in the electrolyte, and resistance due to the sheet resistance of the transparent conducting oxide. Finally, the highest efficiency scores of 10.4% and 11.1% (aperture illumination area 1.004cm2 and 0.219cm2, respectively) were confirmed by a public test center.

Copyright

References

Hide All
[1] O’Regan, B., and Grätzel, M., Nature 353, 737740 (1991).
[2] Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., Valchopoulos, N. and Grätzel, M., J. Am. Chem. Soc. 115, 63826390 (1993).
[3] Nazeeruddin, M. K., Pechy, P., Renouard, T., Zakeeruddin, S. M., Humphry, B., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A., and Grätzel, M., J. Am. Chem. Soc. 123, 16131624 (2001).
[4] Han, L., Koide, N., Chiba, Y., and Mitate, T., Appl. Phys. Lett., 84, 24332435 (2004).
[5] Durrant, J.R., Haque, S. A., and Palomares, E., Coord. Chem. Rev. 248, 12471257 (2004).
[6] Tachibana, Y., Hara, H., Sayama, K., and Arakawa, H., Chem. Mater. 14, 25272535 (2002).
[7] Katoh, R., Furube, A., Yoshihara, T., Hara, K., Fujihashi, G., Takano, S., Murata, S., Arakawa, H., and Tachiya, M., J. Phys. Chem. B 108, 48184822 (2004).
[8] Hara, K., Kurashige, M., Ito, S., Kasasa, C., Shinpo, A., Suga, S., Sayama, K., and Arakawa, H., Chem. Commun. 9, 252253 (2003).
[9] Hara, K., Wang, Z-S., Sato, T, Furube, A., Katoh, R., Sugihara, H., Dan-oh, Y., Kasada, C., Shinpo, A., and Suga, S., J. Phys. Chem. B 109, 1547615482 (2005).
[10] Horiuchi, T., Miura, H., Sumioka, K., and Uchida, S., J. Am. Chem. Soc. 126, 1221812219 (2004).
[11] Islam, A., Sugihara, H., Hara, K., Singh, L.P., Katoh, R., Yanagida, M., Takahashi, Y., Murata, S., and Arakawa, H., J. Photochem. Photobiol. A 145, 135141 (2001).
[12] Nazeeruddin, Md. K., Zakeeruddin, S. M., Lagref, J. –J., Liska, P., Comte, P., Barolo, C., Viscardi, G., Schenk, K., and Grätzel, M., Coord. Chem. Rev. 248, 13171328 (2004).
[13] Islam, A., Sugihara, H., Hara, K., Singh, L.P., Katoh, R., Yanagida, M., Takahashi, Y., Murata, S., Arakawa, H., and Fujihashi, G., Inorg. Chem. 40, 53715380 (2001).
[14] Ferrere, S., Chem. Mater. 12, 10831089 (2000).
[15] Alonso-Vante, N., Nieregarten, J., and Sauvage, J., J. Chem. Soc. Dalton Transactions, 16491654 (1994).
[16] Sugihara, H., Sano, S., Yamaguchi, T., Yanagida, M., Sato, T., Abe, Y., Nagao, Y., and Arakawa, H., J. Photochem. Photobiol.A 166, 8190 (2004).
[17] Islam, A., Sugihara, H., Yanagida, M., Hara, K., Fujihashi, G., Tachibana, Y., Katoh, R., Murata, S., and Arakawa, H., New J. Chem. 26, 966 (2002).
[18] Islam, A., Chowdhury, F. A., Chiba, Y., Komiya, R., Fuke, N., Ikeda, N., Nozaki, K., and Han, L., Chem. Mater. 18 5178 (2006).
[19] Gao, S., Islam, A., Numata, Y., Han, L., Applied Physics Express 3 062301 (2010).
[20] Morandeira, A., Lopez-Duarte, I., O’Regan, B., Martinez-Diazm, M. V., Forneli, A., Palomares, E., Torres, T. and Durrant, J. R., J. Mater. Chem., 19, 50165026 (2009).
[21] Jiang, X., Marinado, T., Gabrielsson, E., Hagberg, D. P., Sun, L., and Hagfeldt, A., J. Phys. Chem. C, 114, 27992805 (2010) and references cited there in.
[22] Marinado, T., Hahlin, M., Jiang, X., Quintana, M., Johansson, E. M. J., Gabrielsson, E., Plogmaker, S., Hagberg, D. P., Boschloo, G., Zakeeruddin, S. M., Grätzel, M., Siegbahn, H., Sun, L., Hagfeldt, A., and Rensmo, H., J. Phys. Chem. C, 114, 1190311910 (2010).
[23] Islam, A., Singh, S. P., Yanagida, M., Karim, M. R., Han, L., International Journal of Photoenergy, 2011, 7 (2011).
[24] Usami, A., Sol. Energy Mater. Sol. Cells, 64, 7383 (2000).
[25] Wang, P., Zakkeruddin, S. M., Comte, P., Charvet, R., H-Baker, R., and Grätzel, M., J. Phys. Chem. B, 107, 1433614341 (2003).
[26] Meier, J., Spitznagel, J., Kroll, U., Bucher, C., Fay, S., Moriarty, T., and Shah, A., Thin Solid Films, 451452, 518524 (2004).
[27] Zhao, Y., Miyajima, S., Ide, Y., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys. 41, 64176420 (2002).
[28] Nasuno, Y., Kondo, M., and Matsuda, A., Jpn. J. Appl. Phys. 40, L303L305 (2001).
[29] Chiba, Y., Islam, A., Kakutani, K., Komiya, R., Koide, N., and Han, L., Proc. International Photovoltaic Science & Engineering Conference (PVSEC-15), 665 (2005).
[30] Sze, S. M., Physics of Semiconductor Devices, (1981).
[31] Huang, S. Y., Schlichthoerl, G., Nozik, A. J., Grätzel, M., and Frank, A. J., J. Phys. Chem. B, 101, 25762582 (1997).
[32] Kusama, H., and Arakawa, H., Sol. Energy Mater. Sol. Cells, 81, 8799 (2004).
[33] Kato, T., Fujimoto, M., Kado, T., Sakaguchi, S., Kosugi, D., Shiratuchi, R., Takashima, W., Kaneto, K., and Hayase, S.,J. Electrochem. Soc., 152, A1105A1108 (2005).
[34] Kusama, H., and Arakawa, H., J. Photochem. Photobiol. A, 160, 171179 (2003).
[35] Haque, S. A., Palomares, E., Cho, B. M., Green, A. N. M., Hirata, N., Klug, D. R., and Durrant, J.R., J. Am. Chem. Soc. 127, 34563462 (2005).
[36] Fukui, A., Komiya, R., Yamanaka, R., Islam, A., and Han, L., Sol. Energy Mater. Sol. Cells, 90, 649658 (2006).
[37] Han, L., Koide, N., Chiba, Y., Islam, A., Komiya, R., Fuke, N., Fukui, A., and Yamanaka, R., Appl. Phys. Lett., 86, 213501, 13 (2005).
[38] Koide, N., and Han, L., Rev. Sci. Instrum. 75, 28282831 (2004).
[39] Koide, N., Chiba, Y., and Han, L., Jpn. J. Appl. Phys., 44, 41764181 (2005).

Keywords

Highly Efficient Dye-sensitized Solar Cells

  • Liyuan Han (a1) and Ashraful Islam (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed