Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T23:33:57.104Z Has data issue: false hasContentIssue false

High-Energy Mechanical Synthesis of Nanophase Fluorite-Structured Mixed Oxide Catalysts with a High Redox Activity

Published online by Cambridge University Press:  10 February 2011

Alessandra Primavera
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, via Cotonificio 108, Università di Udine 33100 Udine, Italy, catalysis@dstc.uniud.it
Alessandro Trovarelli
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, via Cotonificio 108, Università di Udine 33100 Udine, Italy, catalysis@dstc.uniud.it
Jordillorca
Affiliation:
Departament de Química Inorgànica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
Daniela Terribile
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, via Cotonificio 108, Università di Udine 33100 Udine, Italy, catalysis@dstc.uniud.it
Carla de Leitenburg
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, via Cotonificio 108, Università di Udine 33100 Udine, Italy, catalysis@dstc.uniud.it
Giuliano Dolcetti
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, via Cotonificio 108, Università di Udine 33100 Udine, Italy, catalysis@dstc.uniud.it
Get access

Abstract

A series of nanostructured, highly defective, ternary solid solutions containing CeO2, ZrO2, and MnO2 or CuO were prepared by high-energy mechanical milling of individual components. Morphological and redox properties were studied by XRD, HRTEM and temperature-programmed reduction techniques. It was shown that the introduction of small amounts of copper and manganese strongly promotes the redox behavior of cerium at lower temperatures in comparison with CeO2 and CeO2-ZrO2. High temperature treatment of up to 1400K was also shown to further promote overall redox capacity without affecting low-temperature redox behavior. Moreover, evidence is provided to show that Cu and Mn are dissolved within the CeO2 lattice structure. Addition of dopants enhances catalytic redox properties in the oxidation of CO at low temperatures, which is associated with the high concentration of oxygen vacancies that form on the introduction of aliovalent elements into the ceria-zirconia lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Trovarelli, A., Catal. Rev.-Sci. Eng. 38, 439 (1996).Google Scholar
2. Cho, B. K., J. Catal., 131, 74 (1991).Google Scholar
3. Logan, A. D. and Shelef, M., J. Mater. Res. 9, 468 (1994).Google Scholar
4. Murota, T., Hagesawa, T., Aosaza, T., Matsui, H. and Motoyama, M., J. Alloys Compounds 191, 298 (1993).Google Scholar
5. Fomasiero, P., Di Monte, R., Rao, G. R., Kaspar, J., Meriani, S., Trovarelli, A. and Graziani, M., J. Catal., 151, 168 (1995).Google Scholar
6. Ranga Rao, G., Fornasiero, P., Kaspar, J., Meriani, S., Di Monte, R., and Graziani, M., Stud. Surf. Sci. Catal., 96, 631 (1995).Google Scholar
7. Liu, W. and Flytzani-Stephanopoulos, M., J. Catal., 153, 317 (1995).Google Scholar
8. Zamar, F., Trovarelli, A., de Leitenburg, C. and Dolcetti, G., J. Chem. Soc. Chem. Commun., 1995. 965.Google Scholar
9. Sun, Y. and Sermon, P. A., J. Mater. Chem. 6, 1025 (1996).Google Scholar
10. de Leitenburg, C., Trovarelli, A., Zamar, F., Maschio, S., Dolcetti, G. and Llorca, J., J. Chem. Soc. Chem. Commun., 1996. 2181.Google Scholar
11. Kim, D. J., J. Amer. Ceram. Soc. 72, 1415 (1989).Google Scholar
12. Lamonier, C., Bennani, A., D'Huysser, A., Aboukaïs, A. and Wrobel, G., J. Chem. Soc. Faraday Trans. 92, 131 (1996).Google Scholar
13. Zhang, Y., Andersson, A. and Muhammed, M., Appl. Catal. B: Environ., 6, 325 (1995).Google Scholar
14. Davis, R. M., McDermott, B. and Koch, C. C., Metall. Trans. A 19A, 2867 (1988).Google Scholar
15. Yao, M. D., and Yao, Y. Y. F., J. Catal. 86, 254 (1984).Google Scholar
16. Perrichon, V., Laachir, A., Bergeret, G., Frety, R., Tournayan, L. and Touret, O., J. Chem. Soc. Faraday Trans. 90, 773 (1994).Google Scholar
17. Kacimi, S., Barbier, J. Jr, Taha, R., Duprez, D., Catal. Lett., 22, 343 (1993).Google Scholar
18. Trovarelli, A., de Leitenburg, C., Dolcetti, G. and Llorca, J., J. Catal., 151, 111 (1995).Google Scholar
19. Tschöpe, A. and Ying, J. Y., NanoStructured Materials, 6, 1005 (1995).Google Scholar
20. Tschöpe, A., Ying, J. Y., Liu, W., and Flytzani-Stephanopoulos, M. in Materials and Processes for Environmental Protection edited by Voss, K. E., Quick, L. M., Godgil, P. N. and Adkins, C. L. J. (Mater. Res. Soc. Proc. 344, Pittsburgh, PA 1994) pp 133138.Google Scholar
21. Koh, D. J., Chung, J. S., Kim, Y.G., Lee, J. S., Nam, I. and Moon, S. H., J. Catal. 138, 630 (1992).Google Scholar