Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T00:26:21.651Z Has data issue: false hasContentIssue false

High Voltage Amorphous Silicon Solar Cells by Hot-Wire Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

Qi Wang
Affiliation:
Electronic Materials and Device Division National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401, U.S.A.
Eugene Iwaniczko
Affiliation:
Electronic Materials and Device Division National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401, U.S.A.
Get access

Abstract

We have achieved the best open-circuit voltage (Voc = 0.94 V) to-date in hydrogenated amorphous silicon (a-Si:H) photovoltaic cells deposited entirely by hot-wire chemical vapor deposition. The fill factor (FF = 0.74) remained high and a current density of 8-9 mA/cm2 with about 1800 Å i-layer was obtained in our n-i-p cells on untextured stainless-steel substrates. The Voc improvement of about 60 mV in compared to our previous best Voc was obtained by incorporating materials grown with H-dilution close to the phase transition from amorphous to microcrystalline silicon in the i-layer and at the i-p interface. A low substrate temperature of 150°C for the i-layer was also essential, most likely to widen the bandgap of the i-layer. A brief atomic H-treatment after grown the i-layer increases the Voc further by improving the p-i interface. The last 60 Å of the i-layer before p-layer is extremely close to the transition to microcrystallinity, though it remains mainly amorphous. Our p-layers are also close to the phase transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sze, S.M., Physics of semiconductor devices. New York, Wiley. 1981.Google Scholar
2. Tiedje, T., Appl. Phys. Lett., 40 p. 627. 1982.Google Scholar
3. Jiang, L., Lyou, J.H., Rane, S., Schiff, E. A., Wang, Qi, and Yuan, Q.; Mat. Res. Soc. Proc. Vol. 609, p.A19.3, 2000.Google Scholar
4. Pearce, J.M.A., Koval, R.J., Ferlauto, A.S., Collins, R.W., Wronski, C.R., Yang, J., and Guhua, S.; Appl. Phys. Lett., 77, p.3093, 2000.Google Scholar
5. Yang, J., Banerjee, A., and Guha, S.; Appl. Phys. Lett., 70 p. 2975, 1997.Google Scholar
6. Tran, N.T., Jeffrey, F.R., and Olsen, D.J.. in Amorphous Silicon Semiconductors – Pure and Hydrogenated. 1987. Mat. Res. Soc. Proc., p.545, 1987.Google Scholar
7. Li, Y.M., Jackson, F., Yang, L., Fieselmann, B.F., and Russell, L.. Mat. Res. Soc. Proc., Vol xxx, p.663, 1994.Google Scholar
8. Tanaka, H., Ishiguro, N., Miyashita, T., Yanagawa, N., Sadamoto, M., Koyama, M., Miyachi, K., Ashida, Y., and Fukuda, N.; in 23rd IEEE Photovoltaic Specialists Conference. IEEE, p.811, 1993.Google Scholar
9. Wang, Qi, Iwaniczko, E., Xu, Yueqin, Nelson, B., and Mahan, H., Mat. Res. Soc. Proc., Vol 557 p.163. 1999.Google Scholar
10. Wang, Qi, Iwaniczko, E., Xu, B.P.N.Y., Mahan, A.H., Crandall, R.S., and Bran, H.M.; in 28th IEEE Photovoltaic Specialists conference. p.717, 2000.Google Scholar
11. Bauer, S., Herst, W., Schroeder, B., and Oechsner, H.; Proc. in 26th IEEE PV Spec. Conf., 353, p.719, 1997.Google Scholar
12. Mahan, A.H., Reedy, R.C. Jr, Iwaniczko, E., Wang, Q., Nelson, B.P., Xu, Y.X., Gallagher, A. C., Branz, H.M., Crandall, R.S., Yang, J., and Guha, S.; Mat. Res. Soc. Proc., Vol. 507, p.119, 1998.Google Scholar
13. Morrison, S. and Madan, A.; in 28th IEEE Photovoltaic Specialists conference. p.837, 2000.Google Scholar
14. Nelson, B.P., Wang, Q., Iwaniczko, E., Mahan, A.H., and Crandall, R.S.; Mat. Res. Soc. Proc., vol 507, p.927, 1998.Google Scholar
15. Yue, G.Z., Lorentzen, J. D., Lin, J., Han, D.X, and Wang, Q., Appl. Phys. Lett., 67, p.3468, 1999.Google Scholar
16. Wanka, H.N. and Schubert, M.B.; Mat. Res. Soc. Proc., Vol.467, p.651,. 1997.Google Scholar