Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T14:56:23.572Z Has data issue: false hasContentIssue false

High Temperature Implantation of Tm in GaN

Published online by Cambridge University Press:  01 February 2011

K. Lorenz
Affiliation:
ITN, Estrada Nacional 10, 2686–953 Sacavém, Portugal
U. Wahl
Affiliation:
ITN, Estrada Nacional 10, 2686–953 Sacavém, Portugal
E. Alves
Affiliation:
ITN, Estrada Nacional 10, 2686–953 Sacavém, Portugal
S. Dalmasso
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, G4 0NG, U.K.
R. W. Martin
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, G4 0NG, U.K.
K. P. O'Donnell
Affiliation:
Department of Physics, University of Strathclyde, Glasgow, G4 0NG, U.K.
Get access

Abstract

Thulium ions were implanted into MOCVD grown GaN films with a fluence of 2.5×1015 at/cm2 at temperatures between 20 and 500 °C. The lattice damage introduced by the implantation and the effect of post-implant annealing were investigated using the Rutherford backscattering/channeling (RBS/C) technique. Whereas for room temperature implantation the implanted layer becomes amorphous, high temperature implantation inhibits amorphisation. For implantation temperatures higher than 300 °C the RBS/C results clearly show two different damage regions - one at the surface and the second deeper in the crystal coinciding with the Tm depth profile. Annealing causes a decrease of the surface damage as well as initiating regrowth from the unimplanted bulk GaN. For the samples that were not completely amorphous a large part of the Tm atoms were found to be incorporated in Ga-sites. The optical properties of the ion implanted GaN films have been studied by room temperature cathodoluminescence. Directly following the implantation no Tm-related luminescence was observed. Subsequent annealing of the samples achieved optical activation, revealing well-defined emissions due to intra-4f-shell transitions of the Tm3+ ions in the blue spectral range at 477 nm and in the near infra-red at 804 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Steckl, A.J. and Zavada, J.M., MRS Bull. 24, 33 (1999).Google Scholar
[2] Steckl, A.J. and Birkhahn, R., Appl. Phys. Lett. 73, 1700 (1998).Google Scholar
[3] Birkhahn, R., Garter, M., Steckl, A.J., Appl. Phys. Lett. 74, 2161 (1999).Google Scholar
[4] Heikenfeld, J., Garter, M., Lee, D.S., Birkhahn, R., Steckl, A.J., Appl. Phys. Lett. 75, 113 (1999).Google Scholar
[5] Steckl, A.J., Garter, M., Lee, D.S., Heikenfeld, J., Birkhahn, R., Appl. Phys. Lett. 75, 2184 (1999).Google Scholar
[6] Monteiro, T., Soares, J., Correia, M.R., Alves, E., J. Appl. Phys. 89, 6183 (2001).Google Scholar
[7] Lozykowski, H.J., Jadwisienczak, W.M., Brown, I., J. Appl. Phys. 88, 210 (2000).Google Scholar
[8] Alves, E., Lorenz, K., Vianden, R., Boemare, C., Soares, M.J., Monteiro, T., Mod. Phys. Lett. B 15, 28–29, 1281 (2001).Google Scholar
[9] Lozykowski, H.J., Jadwisienczak, W.M., Brown, I., J. Appl. Phys. 74, 1129 (1999).Google Scholar
[10] Wang, Y.Q. and Steckl, A.J., Appl. Phys. Lett. 82, 502 (2003).Google Scholar
[11] Lorenz, K., Alves, E., Wahl, U., Monteiro, T., Dalmasso, S., Martin, R.W., O'Donnell, K.P., Vianden, R., to be published in Materials Science & Engineering B 105, dec 2003 Google Scholar
[12] Vantomme, A., Hogg, S.M., Wu, M.F., Pipeleers, B., Swart, M., Goodman, S., Auret, D., Iakoubovskii, K., Adriaenssens, G.J., Jacobs, K., Moerman, I., Nucl. Instr. Meth. B 175–177, 148 (2001).Google Scholar
[13] Smulders, P.J.M., Boerma, D.O., Nucl. Instr. Meth. Phys. Res. B 29, 471 (1987).Google Scholar
[14] Yoshiasa, A., Koto, K., Maeda, H. and Ishii, T., Jpn. J. Appl. Phys. 36, 781 (1997).Google Scholar