Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-27T18:15:05.986Z Has data issue: false hasContentIssue false

High Resolution Electron Microscopy Of Intercalated Phases In The Y-Ba-Cu-0 System

Published online by Cambridge University Press:  25 February 2011

C. P. Burmester
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, Cyclotron Road, BerkeleyCA 94720 Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
M. Fendorf
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, Cyclotron Road, BerkeleyCA 94720 Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
L. T. Wille
Affiliation:
Department of Physics, Rorida Atlantic University, Boca Raton, FL 33431
R. Gronsky
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720 National Center for Electron Microscopy, Lawrence Berkeley Laboratory, Cyclotron Road, Berkeley, CA 94720
Get access

Abstract

High resolution transmission electron microscopy (HRTEM) is used to investigate the transformation mechanism responsible for the occurrence of the many stable layered phases in the pseudo-binary Y2Ba4Cu6+xO14+x system. In particular, HRTEM results are compared with microstructural configurations generated by an earlier theoretical study which modeled this transformation by means of an intercalation mechanism. HRTEM images of partially transformed Y-Ba-Cu-O reveal that the predominant structural change is limited to the CuO planes. The location of the transformation front, revealed in the micrographs by the presence of these partial dislocations, suggests that the transformation is nucleated at grain boundaries and internal surfaces within the material. The observation of local CuO layer ordering along the [001] direction is taken as evidence for the presence of longer range interactions. A two-dimensional approximation to the bulk Monte Carlo simulation incorporating long range screened Coulomb [001] interactions is used to investigate the possibility and nature of local, transient stage orderings.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Char, K., Barton, R.W., Marshall, A.F., Kapitulnik, A., and Laderman, S.S., Physica C 152, 475 (1988).Google Scholar
2 Karpinski, J., Kaldis, E., Jilek, E., Rusiecki, S., and Bucher, B., Nature 336, 660 (1988).Google Scholar
3 Morris, D.E., Nickel, J.H., Wei, J.Y.T., Asmar, N.G., Scott, J.S., Scheven, U.M., Hultgrcn, C.T., Markelz, A.G., Post, J.E., Heaney, P.J., Veblen, D.R., and Hazen, R.M., Phys. Rev. B 39, 7347 (1989).Google Scholar
4 Zandbergen, H.W., Gronsky, R., Wang, K., and Thomas, G., Nature 331, 596 (1988).CrossRefGoogle Scholar
5 Fendorf, M., Kvam, E., and Gronsky, R., in High Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Narayan, J., Chu, C.W., Schneemeyer, L.F., and Christen, D.K. (Materials Research Society, Pittsburgh, 1990), MRS Symp. Proc. 169, 789.Google Scholar
6 Marshall, A.F., Char, K., Barton, R.W., Kapitulnik, A., and Laderman, S.S., J. Mater. Res. 5, 2049 (1990).Google Scholar
7 Jin, S., Tiefel, T.H., Nakahara, S., Graebner, J.E., O'Brien, H.M., Fastnacht, R.A., and Kammlot, G.W., Appl. Phys. Lett. 56, 1287 (1990).Google Scholar
8 Eveils, J., Physics World 3, 24 (1990).Google Scholar
9 Safran, S.A., Sol. St. Phys. 40, 183 (1987).Google Scholar
10 Char, K., Newman, N., Garrison, S.M., Barton, R.W., Taber, R.C., Laderman, S.S., and Jacowitz, R.D., Appl. Phys. Lett. 57, 409 (1990).Google Scholar
11 Kilaas, R., in: Proceedings of the 45th Annual Meeting of the Electron Microscopy Society of America, edited by Bailey, G. W. (San Francisco Press, Inc., San Francisco, 1987).Google Scholar
12 Fendorf, M., Burmcster, C.P., Wille, L. T., and Gronsky, R., Appl. Phys. Lett. 57, 2481 (1990).Google Scholar
13 Fendorf, M., Tidjani, M.E., Burmcster, C.P., Wille, L. T., and Gronsky, R., in: Proceedings of the International Conference on Advanced Materials (ICAM 91), European Materials Research Society 1991 Spring Meeting (Elsevier Science Publishers, Amsterdam, 1991), in press.Google Scholar
14 Bak, P., Rep. Prog. Phys. 45, 587 (1982).Google Scholar
15 Ramesh, R., Hwang, D.M., Venkatesan, T., Ravi, T.S., Nazar, L., Inam, A., Wu, X.D., Dutta, B., Thomas, G., Marshall, A.F., and Geballe, T.H., Science 247, 57 (1990).Google Scholar
16 Xiang, X-D., McKernan, S., Vareka, W.A., Zettl, A., Corkill, J.L., Barbee, T.W. III, and Marvin L., Cohen, Nature 348, 145 (1990).CrossRefGoogle Scholar
17 Kijima, N., Gronsky, R., Xiang, X., Vareka, W., Zettl, A., Korkill, J., and Cohen, M., Physica C 181, 18 (1991).CrossRefGoogle Scholar
18 Kijima, N., Gronsky, R., Xiang, X., Vareka, W., Zeill, A., Korkill, J., and Cohen, M., Physica C, in press. Google Scholar
19 Kirczcnow, G., Phys. Rev. Lett. 55, 2810 (1985).Google Scholar
20 McElfresh, M.W., Maple, M.B., Yang, K.N., and Fisk, Z., Appl. Phys A 45, 365 (1988).CrossRefGoogle Scholar
21 van Eenige, E.N., Griessen, R., Heeck, K., Schnack, H.G., Wijngaarden, R.J., Genoud, J.-Y., Graf, T., Junod, A., and Muller, J., submitted to Phys. Rev. Lett.Google Scholar
22 Char, K., Lee, M., Barton, R.W., Marshall, A.F., Bozovic, I., Hammond, R.H., Bcascly, M.R., Geballe, T.H., and Kapitulnik, A., Phys. Rev. B 38, 834 (1988).Google Scholar