Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-28T21:06:04.427Z Has data issue: false hasContentIssue false

High Resolution Copper Lines by direct Imprinting

Published online by Cambridge University Press:  10 February 2011

C.M. Hong
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
X. Sun
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
S.Y. Chou
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
Get access

Abstract

One-micrometer wide copper lines are patterned by direct imprinting and thermolysis. First, a layer of plastic copper hexanoate is spun on a substrate and patterned by direct imprint. Then the copper hexanoate line pattern is converted to copper metal lines by thermal and hydrogen anneals. The converted copper film resistivity is ∼8 μωcm. The direct imprinting of a fine metal pattern points the way to the direct patterning of device materials at high resolution

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Garnier, F., Hajlaoui, R., and Yassar, A., Science 265, 1684 (1994).Google Scholar
2 Bao, Z., Rogers, J.A., Katz, H.E., J. Mat. Chem. 9, 1895 (1999).Google Scholar
3 Hong, C.M., Wagner, S., Mat. Res. Soc. Symp. Proc. 558, (1999), to be published.Google Scholar
4 Wagner, S., Gleskova, H., Sturm, J. C., and Suo, Z., in Technology and Applications of Hydrogenated Amorphous Silicon, edited by Street, R. A. (Springer-Verlag, Berlin, 2000), Springer Series in Materials Science 37, p. 222.Google Scholar
5 Hebner, T. R., Wu, C. C., Marcy, D., Lu, M. H., and Sturm, J. C., Appl. Phys. Lett. 72, 519 (1998).Google Scholar
6 Chang, S.C., Bharathan, J. and Yang, Y., Appl. Phys. Lett. 73, 2561 (1998).Google Scholar
7 Chou, S.Y., Krauss, P.R., and Renstrom, P.J., Science 272, 85 (1996).Google Scholar
8 Chou, S.Y., Krauss, P. R., Zhang, W., Guo, L., and Zhuang, L., J. Vac. Sci. Tech. B. 15, 2897 (1997).Google Scholar
9 Avey, A. A. and Hill, R. H., J. Am. Chem. Soc. 118, 237 (1996).Google Scholar
10 Hong, C. M., Gleskova, H., and Wagner, S., Mat. Res. Soc. Symp. Proc. 471, 35 (1997).Google Scholar
11 Graddon, D. P., J. Inorg. Nucl. Chem. 17, 222 (1961).Google Scholar
12 Cullity, B.D., Elements of x-ray diffractions, (Addison-Wesley, Reading, 1967), p. 261.Google Scholar
13 Swanson, T., Natl. Bur. Stand. (U.S.) 539 1, 15 (1953).Google Scholar