Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T03:28:40.686Z Has data issue: false hasContentIssue false

High Resistivity in N-Type InP and InGaAsP by He+ Ion Induced Amorphization.

Published online by Cambridge University Press:  22 February 2011

V. Sargunas
Affiliation:
CEMD, McMaster University, Hamilton, Ontario, L8S 4L7, Canada.
D. Comedi
Affiliation:
CEMD, McMaster University, Hamilton, Ontario, L8S 4L7, Canada.
J. Zhao
Affiliation:
CEMD, McMaster University, Hamilton, Ontario, L8S 4L7, Canada.
K. Jankowska
Affiliation:
CEMD, McMaster University, Hamilton, Ontario, L8S 4L7, Canada.
D.A. Thompson
Affiliation:
CEMD, McMaster University, Hamilton, Ontario, L8S 4L7, Canada.
J.G. Simmons
Affiliation:
CEMD, McMaster University, Hamilton, Ontario, L8S 4L7, Canada.
Get access

Abstract

Changes in the resistivity of n-type InP and InGaAsP by He+ ion implantation have been investigated at implant temperatures of 60-523K. The highest resistivities are achieved at the lowest temperatures under the conditions where the dose is sufficient to render the implanted region amorphous, as indicated by Rutherford backscattering/channeling measurements. Anneal data indicates that the high resistivities achieved via amorphization are stable to higher temperatures than when the samples remain crystalline after implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Focht, M.W., Macrander, A.T., Schwartz, B. and Feldman, L.C., J.Appl. Phys. 55, 3859 (1984).Google Scholar
2 Pearton, S.J., Mat.Sci.Rep. 4, 313(1990).Google Scholar
3 Thompson, P.E., Binari, S.C. and Dietrich, H.B., Sol.State Electron. 26, 805 (1993).Google Scholar
4 Pearton, S.J., Abernathy, C.R., Panish, M.B., Hamm, R.A. and Lunardi, L.M., J.Appl.Phys. 66, 656 (1989).Google Scholar
5 Comedi, D., Zhao, J., Jankowska, K., Thompson, D.A. and Simmons, J.G., Appl.Phys.Letts. 63, 2126 (1993).Google Scholar
6 Mitchell, J.B., Foti, G., Howe, L.M., Campisano, S.U. and Rimini, E., Radiat. Effects, 26, 193 (1975).Google Scholar
7 Xiong, F., Tsai, C.J., Vreeland, T. and Tombrello, T., Mat.Res.Soc. Symp.Proc. Vol 201, 375 (1991).Google Scholar
8 Carter, G., Kostic, S., Nobes, M.J., Davies, J.A., Stevanovic, D.V. and Thompson, D.A., Nucl.lnstrum.Meth.Phys. Res, B19/20, 422 (1987).Google Scholar
9 Akano, U.G., Mitchell, I.V., Shepherd, F.R., Miner, C.J. and Rousini, R., J.Vac.Sci.Technol. A11, 1019 (1993).Google Scholar