Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-19T04:49:08.272Z Has data issue: false hasContentIssue false

High Quality Homoepitaxial Diamond Films Grown in End-Launch Type Reactors

Published online by Cambridge University Press:  10 February 2011

Kazushi Hayashi
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
Sadanori Yamanaka
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
Hideyo Okushi
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
Koji Kajimura
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

High quality diamond films have been successfully grown, by step-flow, on (001) diamond substrates using an end-launch type chemical vapor deposition reactor. Electrical properties of as-deposited diamond films as well as the surface morphology and the film crystallinity were investigated. Optical and atomic-force microscope images indicated that diamond films consisted of atomically flat terraces and macroscopic steps running parallel to [110×l and 1×2 double-domain structure. The currentvoltage characteristics of Al-Schottky contacts to these step-flow grown diamond films showed excellent rectification properties, indicating the potential of this material for electronic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kamo, M., Yurimoto, H., and Sato, Y., Appl. Surf. Sci. 33, 553 (1988).Google Scholar
2. Tsuno, T., Tomikawa, T., Shikata, S., Imai, T., and Fujimori, N., Appl. Phys. Lett. 64, 572 (1994).Google Scholar
3. Badzian, A. and Badzian, T., Diamond Related Materials 2, 147 (1993).Google Scholar
4. Lee, N. and Badzian, A., Appl. Phys. Lett. 66, 2203 (1994).Google Scholar
5. Wild, C., Kohl, R., Herres, N., Müller-Sebert, W., and Koidl, P., Diamond Related Materials 3, 373 (1994).Google Scholar
6. Enckevort, W. J. P. van, Janssen, G., Vollenberg, W., and Giling, L. J., J. Cryst. Growth 148, 365 (1995).Google Scholar
7. Vitton, J.-P., Garenne, J.-J., and Truchet, S., Diamond Related Materials 2, 713 (1993).Google Scholar
8. Enckevort, W. J. P. van, Janssen, G., Vollenberg, W., Schermer, J. J., and Giling, L. J.,Diamond Related Materials 2, 997 (1993).Google Scholar
9. Plano, L. S., in Diamond: Electronic properties and Applications, edited by Pan, L. S. and Kania, D. R. (Kluwer Academic, Boston, 1995) p. 78.Google Scholar
10. Landstrass, M. I. and Ravi, K. V., Appl. Phys. Lett. 55, 1391 (1989).Google Scholar
11. Kawarada, H., Aoki, M., Sasaki, H., and Tsugawa, K., Diamond Related Materials 3, 961 (1994).Google Scholar
12. Hayashi, K., Yamanaka, S., Okushi, H., and Kajimura, K., to be published.Google Scholar
13. Tsuno, T., Imai, T., Nishibayashi, Y., Hamada, K., and Fujimori, N., Jpn. J. Appl. Phys. 30, 1063 (1991).Google Scholar
14. Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, 1988) p. 113.Google Scholar