Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-14T23:08:25.486Z Has data issue: false hasContentIssue false

High Power InAsSb/InAsSbP Laser Diodes Emitting at 3 ∼ 5 μm Range

Published online by Cambridge University Press:  10 February 2011

M. Razeghi
Affiliation:
Center for Quantum Devices, Northwestern University, Evanston, Illinois 60208
J. Diaz
Affiliation:
Center for Quantum Devices, Northwestern University, Evanston, Illinois 60208
H. J. Yi
Affiliation:
Center for Quantum Devices, Northwestern University, Evanston, Illinois 60208
D. Wu
Affiliation:
Center for Quantum Devices, Northwestern University, Evanston, Illinois 60208
B. Lane
Affiliation:
Center for Quantum Devices, Northwestern University, Evanston, Illinois 60208
A. Rybaltowski
Affiliation:
Center for Quantum Devices, Northwestern University, Evanston, Illinois 60208
Y. Xiao
Affiliation:
Center for Quantum Devices, Northwestern University, Evanston, Illinois 60208
H. Jeon
Affiliation:
Center for Quantum Devices, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

We report metalorganic chemical vapor deposition-grown double heterostructure and multiple quantum well InAsSb/InAsSbP laser diodes emitting at 3 to 4 μm and light emitting diodes up to 5 μm. Maximum output power up to 1 W (from two facets) with differential efficiency above 70 % up to 150 K was obtained from a MQW laser with stripe width of 100 μm and cavity length of 700 μm for emitting wavelength of 3.6 μm at 90 K. Maximum operating temperature up to 220 K with threshold current density of 40 A/cm2 at 78 K were achieved from the double-heterostructure lasers emitting at 3.2 μm. The far-field beam divergence as narrow as 24° was achieved with the use of higher energy gap barrier layers, i.e., lower effective refractive index, in MQW active region. We also discuss the effect of composition-fluctuation in the InAsSb active region on the gain and threshold current of the lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Walpole, J. N., Calawa, A. R., Harman, T. H., and Groves, S. H., Appl. Phys. Lett. 28, 552 (1976)Google Scholar
2 Spanger, B., Schiessl, U., Lambrecht, A., Bottner, H., and Tacke, M., Appl. Phys. Lett 53, 2582 (1988);Google Scholar
Shi, Z., Tacke, M., Lambrecht, L., and Bottner, H., Appl. Phys. Lett. 66, 2537 (1995)Google Scholar
3 Choi, H. K., Turner, G. W., Manfra, M. J., and Connors, M. K., “175 K continuous wave operation of InAsSb/InAlAsSb quantum well diode lasers emitting at 3.5 μm”, Appl. Phys. Lett. 68, 2936 (1996)Google Scholar
4 Kurtz, S. R., Biefeld, R. N., Allerman, A. A., Howard, A. J., Crawford, M. H., and Pelczynski, M. W., “Pseudomorphic InAsSb multiple quantum well injection laser emitting at 3.5 μm”, Appl. Phys. Lett. 68, 1332 (1996)Google Scholar
5 Allerman, A. A., Biefeld, R. M., and Kurtz, S. R., Appl. Phys. Lett 69, 465 (1996);Google Scholar
Wang, C. A., Jensen, K. F., Jones, A. C., and Choi, H. K., Appl. Phys. Lett. 68, 400 (1996)Google Scholar
6 Stringfellow, G. B., J. Crystal Growth 58, 194 (1982)Google Scholar
7 Glas, F., J. Appl Phys. 62, 3201 (1987)Google Scholar
8 Follstaedt, D. M., Biefeld, R. M., Kurtz, S. R., and Baucom, K. C., J. Electron. Mater. 24, 819 (1995);Google Scholar
Biefeld, R. M., Baucom, K. C., Kurtz, S. R. and Follstaedt, D. M., J. Cryst. Growth 133, 38 (1993)Google Scholar
9 Choi, H. K., Turner, G. W., and Liau, Z. L., Appl. Phys. Lett. 65, 2251 (1994)Google Scholar
10 Diaz, J., Yi, H., Rybaltowski, A., Lane, B., Lukas, G., Wu, D., Kim, S., Erdtmann, M., Kass, E., and Razeghi, M., “Aluminium free InAsSbP/InAsSb/lnAs laser diodes ( λ= 3.2 μm ) grown by low-pressure metalorganic chemical vapor deposition”, to be published in Appl. Phys. Lett.Google Scholar
11 Wu, D., Kass, E., Diaz, J., Lane, B., Rybaltowski, A., Yi, H. J., and Razeghi, M., “InAsSbP/lnAsSb/InAs diode lasers emitting at 3.2 μm grown by Metalorganic chemical vapor deposition”, to be published in IEEE Photon. Technol. Lett.Google Scholar
12 Kim, S., Erdtmann, M., Wu, D., Kass, E., Yi, H., Diaz, J., and Razeghi, M., “Photoluminescence study of InAsSb/lnAsSbP heterostructures grown by low-pressure metalorganic chemical vapor deposition”, Appl. Phys. Lett. 69, 1614 (1996)Google Scholar
13 Lane, B., Wu, D., Yi, H., Diaz, J., Rybaltowki, A., Kim, S., Erdtmann, M., Jeon, H., and Razeghi, M., “Study on the effects of minority carrier leakage in InAsSWInPAsSb double heterostructures”, to be published in Appl. Phys. Lett.Google Scholar
14 Lane, B., Wu, D., Rybaltowski, A., Yi, H., Diaz, J., and Razeghi, M., “Compressivly-strained multiple quantum well InAsSb lasers emitting at 3.6 μm grown by metal-organic chemical vapor deposition”, to be published in Appl. Phys. Lett.Google Scholar
15 Gershoni, D., Henry, C. H., and Baraff, G. A., IEEE J. Quantum Electron. QE- 29, 2433 (1993)Google Scholar
16 Reisinger, , Zory, P. Jr, and Waters, R., IEEE J. Quantum Electron. QE- 23, 993 (1987)Google Scholar
17 Bulter, J., Zoroofchi, J., “Radiation Fields of GaAs-(AlGa)As Injection Lasers”, IEEE J. Quantum Electron. QE- 10, 809 (1974)Google Scholar
18 Schlessinger, Monroe, “Infrared Technology fundamentals” (Marcel Dekker, Inc., New York, 1995)Google Scholar